

Real People. Real Solutions.

Preliminary Engineering Report 2018 Street & Utility Improvements

City of Hopkins & City of St. Louis Park Hopkins Project No. 2017-10 BMI Project No. T19.114259

November, 2017

Submitted by:

Bolton & Menk, Inc. 12224 Nicollet Avenue Burnsville, MN 55337 P: 952-890-0509 F: 952-890-8065

Preliminary Engineering Report

2018 Street & Utility Improvements

in

Hopkins, MN

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

By:

Nick Amotunia

Nicholas Amatuccio, P.E. License No. 53639

Date:

11/1/17

Reviewed by:

Michael Waltman, P.E. License No. 48696

Date:

11/1 117

TABLE OF CONTENTS

	Execu	utive Summary1
1.	Proje	ect Introduction
2.	Back	ground4
3.	Existi	ing Conditions
	3.1	Streets
	3.2	Storm Sewer
	3.3	Sanitary Sewer
	3.4	Water Main
4.	Prope	osed Improvements
	4.1	Streets
	4.2	Storm Sewer
	4.3	Sanitary Sewer
	4.4	Water Main
	4.5	Pedestrian Facilities
	4.6	Driveways14
	4.7	Lawn Sprinkler Systems
	4.8	Street Signing and Striping
	4.9	Turf Restoration
	4.10	Boulevard Trees
5.	Neigh	borhood Meeting
6.	Estim	nated Costs
7.	Asses	sment Rates
8.	Right	of-Way / Easements / Permits
9.	Proje	ect Schedule
10.	Feasi	bility and Recommendation

APPENDIX

Appendix A – Preliminary Cost Estimates Appendix B – Figures Appendix C – Preliminary Assessment Roll Appendix D – Neighborhood Meeting & Resident Questionnaire Appendix E – Geotechnical Evaluation

EXECUTIVE SUMMARY

Background Information

The Hopkins City Council ordered preparation of this Preliminary Engineering Report at its June 20, 2017 meeting. In general, the goal of the project is to preserve the investments Hopkins has made in its infrastructure with proper upkeep through the City's Pavement Management Program. The preliminary design report has been completed to identify the appropriate improvements needed as well as the associated project costs and preliminary estimated assessments. A joint power agreement was made with the City of St. Louis Park with Hopkins as the lead in the project. This agreement was made because Texas Avenue and Division Street are on the border between the City of Hopkins and the City of St. Louis Park. It is more feasible to reconstruct the entire street within the same contract instead of only reconstructing half of the street.

Proposed Improvements

This report examines potential street and utility construction in the Cottageville neighborhood in the cities of Hopkins and St. Louis Park. These areas are depicted in Figure 1 of Appendix B. The proposed improvements are described in the body of this report and are graphically illustrated in Appendix B. In brief, the proposed improvements consist of:

- Full reconstruction of the street section with new concrete curb and gutter along with replacement of watermain, sanitary sewer, and storm sewer. Reconstruction will occur on the following corridors:
 - o Lake Street NE, from Blake Road N to Texas Avenue
 - o Murphy Street, from Lake Street NE to Oxford Street
 - o Oxford Street, from Blake Road N to Texas Avenue
 - o Cambridge Street, from Blake Road N to Texas Avenue
 - o Division Street, from Texas Avenue S to the westerly limits
 - Texas Avenue, from MN Highway 7 Service Road to about 100 feet south of Lake Street NE
- Concrete paving of the alley south of Lake Street NE and west of Texas Avenue
- Sanitary Sewer lining in areas across the City identified by the Public Works Department
- Storm Manhole Rehabilitation/Replacement in the intersection of 17th Ave and 1st St S

Estimated Costs & Proposed Funding

Cost estimates have been prepared for addressing the varying needs of all areas reviewed. Detailed cost estimates are provided in Appendix A and summarized below in Table ES-1.

TOTAL ESTIMATED PROJECT COST	\$ 5	5,77	'9,20	0
ENGINEERING & ADMINISTRATION (21%)	\$ 1	,00	13,00	0
CONTINGENCIES (10%)	\$	43	4,20	0
STORM SEWER	\$	14	5,90	0
WATERMAIN	\$	86	0,60	0
SANITARY SEWER	\$1	,33	6,80	0
STREET	\$ 1	,99	8,60	0

Table E	S-1 -	Estimated	Cost o	f Propos	ed 2018	Impro	vements	Project
I GOIC L		Listinated	0000	opos		mpro	, entrenes	I I OJCCU

The project is proposed to be funded with general obligation bonds, utility funds, and assessments to individual properties. There will also be funding from Metropolitan Council and the City of St. Louis Park to pay for their share of the cost.

1. **PROJECT INTRODUCTION**

This report examines the proposed street and utility improvements including storm sewer, water main, sanitary sewer, and street reconstruction along the following streets as shown on Figure 1 in Appendix B:

- Lake Street NE from Blake Road N to Texas Avenue
- Murphy Street from Lake Street NE to Oxford Street
- Oxford Street from Blake Road N to Texas Avenue
- Cambridge Street from Blake Road N to Texas Avenue
- Division Street from Texas Avenue S to the westerly limits
- Texas Avenue from MN Highway 7 Service Road to about 100 feet south of Lake Street NE
- Alley south of Lake St NE and west of Texas Avenue

This report also examines the following related improvements which are proposed to be designed/bid and constructed in the same project, but without involvement of special assessments:

- Sanitary Sewer lining along 14th Avenue N, from Hwy 7 to Mainstreet
- Sanitary Sewer lining along various other locations in the City

Specifically the project as a whole involves:

- Addition/replacement of storm sewer
- Water main replacement
- Water service replacement
- Sanitary sewer replacement and rehabilitation
- Sanitary sewer service replacement
- Concrete curb & gutter replacement and addition
- Bituminous street removal and reconstruction

2. BACKGROUND

The 2018 Street & Utility Improvements project was initiated following its presence for several years in the City's Capital Improvement Plan. Hopkins City Council ordered the preparation of this feasibility report at its June 20, 2017 council meeting. The feasibility study and report has been completed to better identify the infrastructure improvements needed in the proposed project area and to better define costs associated with the improvements. This report will be used as the basis for final design and is also a required step in the State's Chapter 429 process for special assessments.

This project will also be coordinated with the City of St. Louis Park because two of the streets, Texas Avenue and Division Street, are partially within the St. Louis Park City limits. The City of St. Louis Park will pay for all improvements in St. Louis Park and contribute proportional amounts to design and construction administration.

3. EXISTING CONDITIONS

3.1 STREETS

The bituminous streets within the project areas are aged and exhibit various levels of wear and distress. This is evident on the surface by transverse, block, and alligator cracking. The majority of the project area streets have concrete curb and gutter, though portions have no curbing. In some areas, the curb height is only a few inches, indicating the presence of patching or overlaying of the existing pavement and gutter. There is evidence of previous additional street repairs and maintenance throughout the project area including numerous street patches.

Existing Pavement Conditions

Consistent with observations of the existing pavements made during preparation of this report, the City of Hopkins' Pavement Management System also indicates that the "Pavement Condition Index" (PCI) for many of the street segments in the neighborhood is below the threshold where rehabilitation is cost effective. As such, street reconstruction is appropriate in these areas. The same PCI applies to the St. Louis Park side of Texas Avenue and Division Street because the entire width of the street was constructed at the same time.

The streets within the neighborhood have varying width (measured curb face to curb face, or edge to edge) and slope (grade). Table 3.1 below summarizes these and other existing conditions. Parking is typically allowed on both sides of the streets throughout the neighborhood, except for on the steeper hills of Oxford St and Cambridge St. Large, mature trees are located in the boulevards, near the back of curb, throughout the project area.

Roadway	Existing Street Width	Existing Curb Type	Existing Longitudinal Grade [%]	Existing ROW Width	Existing Sidewalk				
Lake St NE	36 feet	Concrete B618 C&G	0.50 – 3.75	66 feet	South side: Blake Rd N to Texas Ave North side: Blake Rd N to Murphy St				
Murphy St	23 feet	No Curb	2.20 - 4.60	33 feet	None				
Oxford St	23 - 32 feet	Concrete B618 C&G west of Murphy, No Curb to east	0.50 – 14.50	50 feet	Both sides: Blake Rd N to about 500 ft east of Blake Rd N				
Cambridge St	29.5-38.5 feet	Concrete B618 C&G to about 400 ft east of Blake Rd N, No Curb to east	0.50 – 10.50	50 feet	Both sides: Blake Rd N to about 400 ft east of Blake Rd N				
Division St	30 feet	Concrete B618 C&G	0.60 – 10.75	66 feet	None				
Texas Ave	36 feet	Concrete B618 C&G	0.50 – 3.45	66 feet	None				

Table 3.1: Summary Existing Corridor Conditions

Subgrade soil sampling was completed throughout the entire project area by Braun Intertec in the summer of 2017. A copy of Braun's Geotechnical Evaluation Report is included in Appendix F of this report. Fifteen soil borings were taken throughout the project area and summarized in Table 3.2 below. Ground penetrating radar was also used to better delineate and identify discernable bituminous and aggregate base layers.

Street	Bituminous Thickness	Subgrade Material
Lake Street NE	5" – 6"	Mixture of silty sand, poorly graded sand with some gravel, sandy lean clay, fat clay and clayey sand.
Murphy Street	3"	Mixture of clayey sand, poorly graded sand with some gravel and sandy lean clay.
Oxford Street	3"	Poorly graded sand with some gravel.
Cambridge Street	3" – 4"	Mixture of silty sand with some gravel, clayey sand with trace organics, lean clay with sand, lean clay, poorly graded sand and some buried topsoil.
Division Street	3"	Mixture of silty sand, poorly graded sand with some gravel.
Texas Avenue	6" – 6.5"	Mixture of poorly graded sand with some gravel, clayey sand, lean clay, some buried topsoil, clayey sand, lean clay with sand, sandy lean clay and some trace organics.

The soils found just beneath pavements in the project area were most commonly fill soils classified as silty sand or clayey sand. A few of the borings in the project area found buried topsoil and swamp deposits of organic lean clay, lean clay and fat clay. Topsoil and swamp deposits are undesirable materials for roadway construction as they are unable to adequately support heavy vehicles, leading to earlier failure of overlying pavements.

An existing bituminous alley in poor condition is south of Lake Street NE and west of Texas Avenue serves multi-family residential properties along Lake St NE. The alley is delineated by overhead utility poles and residential parking areas/garages. There is a high point in the alley which creates drainage to both the east towards Texas Avenue and to the west towards Minnehaha Creek. The existing width of the alley varies from about 12 to 16 feet in width, however several feet are not usable in spots because of the overhead utility poles. A minimum of 10 feet is the existing usable width. The alley serves 11

properties off of Lake Street NE and borders many garages for the Creekwood Estates apartments to the south.

3.2 STORM SEWER

The existing storm sewer system materials were inventoried in August, 2017. The existing storm sewer systems serving the neighborhood are comprised of a mixture of concrete block and precast concrete catch basins connected by reinforced concrete pipe (RCP).

There are multiple storm sewer systems serving the project area. Portions of the project area flow to catch basins that drain directly to Minnehaha Creek at Lake Street NE. Several catch basins near Blake Rd N connect to a storm line that runs south on Blake Rd through Cottageville Park and ultimately ends up in Minnehaha Creek.

Another system collects drainage from roughly the easterly 30 percent of the project area and discharges to the east into St. Louis Park. The discharge pipe is an existing 18" diameter RCP and leaves the site from the intersection of Texas Avenue and Lake Street NE.

Some drainage issues have been identified throughout the project area through evaluation of site grades and elevations by the project team, feedback from the neighborhood residents, and discussions with City Staff. These drainage issues can be generalized as:

- 1. Due to the flat grades of some of the streets and long stretches of streets with no catch basins, localized drainage problems are prevalent.
- 2. Some drainage structures were also found to be in very poor condition during the field survey. Such structures are often comprised of block or brick, and appear to have been patched with mortar in previous decades. Over time, the mortar has deteriorated from freeze thaw, leaving several structures subject to leakage or potential drastic failure.

Recommendations to alleviate these drainage problems are included in section 4.2 of this report and shown in the Appendix B figures.

3.3 SANITARY SEWER

The existing condition of the sanitary sewer system was evaluated through discussions with City staff and videoed inspection of the interior of the sewer piping by a City contractor. Manhole structures were visually inspected in the field by Bolton & Menk. All roadways in the project area have sanitary sewer mains. There are two lines on Texas Avenue, one for the City of Hopkins and one for city of St. Louis Park.

The existing sanitary sewer system consists of 8 to 9-inch diameter clay pipe. Clay pipe is susceptible to infiltration and root intrusion over time due to the large number of joints and the deterioration of the gasket material originally used to seal the joints.

The majority of the manholes are made of concrete block and built in either the early 1950's or late 1940's. A small number are precast concrete, indicating they were replaced at some point after initial construction of the other infrastructure. Block manholes are also susceptible to infiltration over time due to cracks and deterioration of the mortared joints. Precast concrete manholes continue to be used in modern construction and are generally acceptable provided proper gaskets were provided in initial construction.

Service lines in the neighborhood are typically 4-inch or 6-inch and their material may be clay, orangeburg, transite, or PVC. Based on discussions with City Staff and observations of sewer service replacements to individual properties performed within the last 20 years, a higher proportion of orangeburg sewer service pipe is anticipated compared to other areas in the City of Hopkins. Orangeburg pipe, which can generally be described as layered tar paper wrapped in a round manner to create a pipe, was commonly installed around the time the neighborhood was original developed. Orangeburg pipe is widely known to 'rot' where exposed to water, generally on the bottom of the pipe, and ultimately collapse as it ages and is unable to support the surrounding soil.

Proposed sanitary sewer improvements are discussed later in this report.

3.4 WATER MAIN

The existing layout and condition of the water main was determined from record drawings and discussions with City staff. Water main runs along a portion of all the streets within the project area. The water main is primarily 6-inch cast iron pipe (CIP), with some 12-inch pipe on Texas Ave (one line for Hopkins and one line for St. Louis Park). CIP is a common watermain material, however upon reaching its useful life tends to fail. Because it is so brittle, as the soils around the pipe move slowly over decades, CIP cannot support shearing forces and ultimately breaks. The watermain system was installed in the late 1940s and early 1950s. CIP installed around this time period was also occasionally installed with lead-packed fittings.

Service lines in the neighborhood are typically ³/₄-inch or 1-inch and their material may be copper, galvanized steel, or lead.

4. PROPOSED IMPROVEMENTS

4.1 STREETS

All of the streets within the 2018 project limits are scheduled for full reconstruction. This is based on the City of Hopkins' Capital Improvement Plan (CIP), observed pavement conditions, City of St. Louis Park input, and pavement and soil sampling. These streets

have reached a point where maintenance procedures such as seal coating or milling and overlaying are no longer cost effective strategies.

Proposed reconstruction improvements include replacing the concrete curb and gutter and complete pavement section. In areas where there is no existing concrete curb and gutter, it will be added. Existing drainage patterns are not proposed to change and the elevation of the existing roadways at their edge is proposed to approximate the existing elevations. Attempts at lowering the road will be made where appropriate to improve drainage toward the street where beneficial and practical. Proposed street widths from face of curb to face of curb will vary for each street throughout the project area. The following street widths are proposed:

• Lake St NE is proposed be reconstructed at a width of 36-feet, consistent with the existing street width and will allow for parking lanes to remain on each side of the street. The drive lanes will shared use lanes intended for both bicycles and motorists. Pavement markings called "sharrows" (pictured to the right) indicating the shared use are proposed to be installed.

- **Murphy Street** is proposed to be reconstructed at 24-feet-wide with concrete curb and gutter to be added. This widens the roadway by approximately one foot, though the existing width varies slightly along the roadway length. 24-foot-width is narrower than most other local Hopkins streets but this is the widest street possible in this area without substantial impacts due to the existing conditions and limited right-of-way.
- **Oxford Street** is proposed to be reconstructed at 32-feet-wide from Blake Rd N to Murphy St, which matches the existing width. From Murphy St to Texas Ave, the street is proposed to be 26-feet-wide with concrete curb and gutter to be added, which widens the roadway by approximately three feet. 26-foot-width is narrower than most other local Hopkins Streets but this is the widest street possible in the area without substantial impacts due to the existing conditions. There are currently parking restrictions on both sides of the street from Murphy St to Texas Ave and by widening the road by three feet, parking will now be allowed on one side of the road creating an additional 15 to 20 spaces of parking.
- **Cambridge Street** is proposed to be reconstructed at 38-feet-wide from Blake Rd N to approximately 400 feet to the east, which is consistent with the existing street width in that area. From 400 feet east of Blake Rd to Texas Ave, Cambridge Street is proposed to be reconstructed to 32-feet-wide with concrete curb and gutter to be added. This widens the roadway by approximately three feet in this segment and is consistent with other City of Hopkins streets with similar use.

- **Division Street** is proposed to be reconstructed to 30-feet-wide, which matches the existing street width and is consistent with other similar City of Hopkins streets. The north half of the road is within the City limits of St. Louis Park, who will contribute to those costs.
- **Texas Avenue** is proposed to be reconstructed to 34-feet-wide. This will narrow the road by approximately two feet and will allow for five-foot concrete bike lanes on both sides of the road. These bike lanes will be integral with the concrete curb and gutter. The east half of Texas Ave and the north block between Division St and MN Highway 7 Service Rd is within the City limits of St. Louis Park, who will contribute to those costs.

Several factors were taken into consideration for the proposed Texas Avenue roadway improvements. The proposed improvements to Texas Avenue do not include space for on-street parking. Two alternative typical sections Texas Avenue were also developed which would allow for parking. The evaluation of all three alternatives reached three primary observations which led to the proposed improvements identified above:

- 1. Bike lanes would be a beneficial addition to the corridor as they would provide connectivity with the planned signal by MnDOT at Highway 7, compatibility with Texas Avenue north of Highway 7, compatibility with the St. Louis Park side of the corridor, and is consistent with City set goals for providing a transportation network for all modes of transportation.
- 2. Texas Avenue would be wider if parking lanes were included with designated bike lanes, which would create more impacts to the existing boulevard including trees and loss of driveway length.
- 3. A parking study was performed over a three week period in August and September, 2017. City and Bolton & Menk staff surveyed the area 37+ times on varying days of the week and at different times of day, including nights and weekends. A total of nine cars were observed to be parked on Texas Ave in that three week period. Between this survey and past observations by City Staff, it was determined that eliminating parking on both sides of the street would not have a significant impact on daily routine use, though it is acknowledged that for special events Texas Avenue parking could be useful to residents.

The minimum proposed street grade is 0.5% consistent with City standards. Street grades flatter than 0.50% are undesirable for drainage. In some areas, new low-points may need to be created during on streets with flat grades for proper drainage. These locations, if necessary, will be confirmed during the final design process. Overall drainage patterns/directions throughout the project area are not proposed to change.

The recommended and proposed typical section for all the streets consists of four inches of bituminous pavement over eight inches of aggregate base. In addition, 12" of granular base and geotextile fabric is also proposed on Lake Street NE and parts of Cambridge St and Texas Ave due to poor underlying soils. Spot subgrade corrections usually range from 12 to 24 inches when needed.

The bituminous alley south of Lake St NE is proposed to be reconstructed with 6 inches of concrete over 8 inches of aggregate base. There will also be concrete curb and gutter installed on the south side of the alley to act as a barrier between cars and the apartment garages. The curb and gutter will also facilitate proper drainage to each end of the alley.

4.2 STORM SEWER

Full replacement of the existing storm sewer is proposed due to age and undersized existing piping, location of the system in close proximity to other underlying utilities being replaced, and incompatibility of existing drainage inlets with proposed curb locations. Additional drainage inlets are proposed in areas to help improve drainage and assist in removing water from flowing in the streets, including the area on Lake St NE by the bridge over Minnehaha Creek. Catch basins will be relocated away from driveways and pedestrian ramps.

4.3 SANITARY SEWER

The information used to evaluate the existing condition of the sanitary sewer includes televised recordings of the sewers, record drawings, manhole reports, and discussions with City staff. Due to the age of the sanitary sewer system and the City of Hopkins policy to replace clay sewers during street projects, all of the sanitary sewer is recommended to be completely replaced with PVC pipe. New service wyes will be provided to each home. Per City policy, sanitary services which are not PVC are proposed to be replaced with PVC pipe to the right-of-way (ROW) line. New precast concrete manholes will be installed and incorporate the City standard 27-inch diameter cover with concealed pick-holes.

The City of St. Louis Park sanitary sewer is proposed to remain without improvement at this time. St. Louis Park may consider rehabilitation of the sewer line in the future.

A portion of the existing sanitary sewer along Lake Street NE runs under Minnehaha Creek. This segment of sanitary sewer is proposed to be rehabilitated with a Cured-In-Place-Pipe (CIPP) liner. This trenchless method is proposed as a more cost effective improvement for improvement of the pipe under the creek, which is intuitively challenging and costly to access.

The Metropolitan Council is planning replacement of its existing 24-inch diameter forcemain with installation of two side by side ("dual") 18-inch diameter forcemain pipes along Lake Street between Blake Road and Texas Avenue. The Metropolitan Council will be funding this replacement and has secured its own engineer for preparation of construction plans. The plans are proposed to be included for competitive bidding with the construction plans for proposed improvements described herein by the cities of Hopkins and St. Louis Park. The work for all three agencies will therefore be performed by a single construction contractor under one contract to be administered by the City of Hopkins.

		EX	ISTING P	IPE	PROPOSED
ROADWAY	FROM / TO	DIA.	MATL	AGE	IMPROVEMENTS
Lake St NE	Bridge over Minnehaha Creek to Texas Ave	8	CLAY	71	Reconstruct with 8" PVC
Lake St NE	Blake Rd N to Texas Ave	24	CIP	47	Reconstruct with Dual 18" PVC
Lake St NE	Minnehaha Creek	8	CIP	71	Lining
Murphy St	Lake St NE to Oxford St	8	CLAY	71	Reconstruct with 8" PVC
Oxford St	Blake Rd N to Texas Ave	8	CLAY	71	Reconstruct with 8" and 12" PVC
Cambridge St	Blake Rd N to Texas Ave	8	CLAY	71	Reconstruct with 8" and 12" PVC
Division St (Hopkins)	Texas Ave to Dead End	8	CLAY	71	Reconstruct with 8" PVC
Division St (St. Louis Park)	Texas Ave to Dead End		None		None
Texas Ave (Hopkins)	Lake St NE to Division St	8	CLAY	71	Reconstruct with 8" PVC
Texas Ave (St. Louis Park)	Lake St NE to Hwy 7 Service Rd	9	CLAY	58	Future Lining

T-1.1. / 1		11				•
13 nie 4-1	cummarizec	the nro	nosea	canifary	sewer	improvements
1 a 0 10 - 1	Summarizes	the pro	poscu	Samual y		mprovements

4.4 WATER MAIN

It is proposed to replace all of the City of Hopkins' cast-iron water system with ductile iron pipe (DIP) as a part of this project. 8-inch pipe is a typical recommended minimum main size because the cost differential is relatively low compared to smaller sizes, but the capacity for supplying water, especially the capacity needed for fighting fires, is much greater. On some streets, as shown in the proposed improvement figures in the Appendix, a 12-inch pipe is recommended to match existing sizes or improve the capacity of the system in a manner compatible with surrounding infrastructure, such as that being installed on Blake Road in 2018-2019. Per City policy all water service lines are proposed to be replaced to the right-of-way with a new 1-inch diameter copper service line. A new curb stop valve and box will be provided on each service, approximately on the right-of-way line.

There will also be directionally drilled watermain or watermain that is pipe burst under the bridge at Minnehaha Creek and between Cambridge St and Division St due to the difficulties of open excavation in these areas. This pipe will be a form of plastic pipe (HDPE) instead of ductile iron pipe.

			EXISTING PIPE	DRODOGED		
ROADWAY	FROM / TO	DIA.	MATL	AGE	PROPOSED IMPROVEMENTS	
	Bridge over Minnehaha Creek to	-	G		Reconstruct with 12"	
Lake St NE	Texas Ave	6	Cast	71	DIP	
Lake St NE	Minnehaha Creek	6	Cast	71	Drill/Burst with 12" HDPE	
Murphy St	Lake St NE to Oxford St	6	Cast	70	Reconstruct with 8" DIP	
Oxford St	Blake Rd N to Texas Ave	6	Cast	66	Reconstruct with 8" DIP	
Cambridge St	Blake Rd N to Texas Ave	6	Cast	70	Reconstruct with 12" DIP	
Cambridge St/ Division St	Cambridge St to Division St	4	Cast	70	Drill/Burst with 8" DIP	
Division St (Hopkins)	Texas Ave to Dead End	6	Cast	70	Reconstruct with 8" DIP	
Division St (St. Louis Park)	Texas Ave to Dead End		None		None	
Texas Ave (Hopkins)	Lake St NE to Division St	12	Cast/Ductile	62	Reconstruct with 12" DIP	
Texas Ave (St.	Lake St NE to Hwy 7 Service					
Louis Park)	Rd	12	Cast/Ductile	62	None	

Table 4-2 summarizes the proposed watermain improvements:

4.5 PEDESTRIAN FACILITIES

The existing sidewalks on Lake St NE, Oxford St, and Cambridge St will be removed and replaced in the same locations. The sidewalk on the south side of Lake St NE will be made more consistent with a 5-foot wide sidewalk and 5-foot wide boulevard. There will be no additional sidewalks on these streets to what is already in place.

The City of St. Louis Park is proposing the addition of a 5-foot wide sidewalk with a 6-foot wide boulevard on the east side of Texas Ave between Lake St NE and Highway 7 and the west side of Texas Ave between Division St and Highway 7.

4.6 DRIVEWAYS

All existing driveways within the project areas receiving new concrete curb and gutter will receive a new 5-foot concrete apron to match the proposed concrete curb. Where sidewalk is being placed the apron will extend to the sidewalk. The new concrete aprons will be constructed according to City standards. In addition to the 5-foot driveway apron,

additional driveway pavement disturbed as a part of the project will be replaced in-kind to match the existing driveway with the street improvements.

4.7 LAWN SPRINKLER SYSTEMS

There may be existing sprinkler systems in the residential neighborhood. Adjacent property owners will need to assist in locating and identifying the type of sprinkler systems that are in place prior to and during construction. The contractor will be required to make every effort to preserve the in place systems during construction. Where this is found to be unfeasible, the contractor will be required to remove and replace or salvage and reinstall the existing sprinkler system.

4.8 STREET SIGNING AND STRIPING

The existing street name signs will be replaced by the contractor in order to update the signs to the new City standards. Regulatory signs such as STOP signs will be replaced in order to conform to new retroreflectivity requirements. Existing zebra crosswalk striping and centerline striping will be repainted upon completion of the paving. New pavement markings will be placed for the bike lanes on Texas Ave and the shared use lanes on Lake St NE.

4.9 TURF RESTORATION

Boulevards will be graded as necessary to facilitate drainage from the existing yards to the streets. Turf areas disturbed by construction, either due to boulevard grading or utility service construction, will be graded to match the new street and sidewalk grades and restored with lawn type sod in residential yards. In park or other areas maintained by the City, areas will be restored with seed and mulch (hydroseed).

4.10 BOULEVARD TREES

As with all projects being considered by the City of Hopkins, it is a goal of this project to protect healthy boulevard trees and/or make improvements to the urban tree canopy where feasible. Residents echoed the desire to protect healthy trees and remove dead/dying trees in questionnaire responses. Design and construction of improvements, including appropriate selection of street widths and utility main placement, are proposed to be completed in a manner to achieve the City's goals to save healthy trees. An evaluation of boulevard tree species and condition was completed in consideration of the adjacent street and utility improvements to facilitate design and construction and meet this criteria.

Due to their susceptibility to the Emerald Ash Borer, green ash trees are generally considered undesirable trees. Similarly, Silver Maple trees are more susceptible to storm damage than other species, create a lot of litter because of their soft wood and weak, brittle branches, and thus are not desirable trees to Public Works staff and local residents. Silver maples are also known to have an intrusive root system that can damage sidewalks and curbs and penetrate sewer joints. Finally, American Elm also exist in the project area and are still susceptible to Dutch Elm disease. These three undesirable species, as well as other trees that are either dead or in poor health, should either be removed or otherwise not protected through the design/construction process.

An inventory of the trees located in the right of way was performed in August 2017 by City Public Works Staff. Consistent with the recent 2016 and 2017 Street & Utility Improvements projects, trees that are dead or in very poor condition, and "undesirable" species in fair or poor condition, are proposed to be removed and replaced. Approximately 50 boulevard tree species within the project area, less than the amount in the 2017 project area, are considered undesirable due to condition/species. Specific tree removals will be identified in the final construction plans for the project. Properties located adjacent to boulevard tree removals will be contacted and allowed to provide input on proposed tree replacements. Certain trees may be identified during design or construction to be removed. This may be due to the street reconstruction, grading, utility replacement, sidewalk replacement, water service replacement, sewer service replacement, or other factors. Options to preserve highly desirable trees in harm's way include small retaining walls or moving service lines around trees. The City will work

with the homeowners to replace these trees as part of the project in the event tree removal is necessary.

This project provides an opportunity to increase the health of the neighborhood forest by replacing some of the undesirable species with trees better suited for boulevard areas. Up to two trees are proposed to be installed per each tree removed. The City has usually planted new 2-inch balled and burlapped trees. A list of species to be planted will be formulated during final design in cooperation with the City's Public Works department.

5. Neighborhood Meeting

A neighborhood meeting occurred on September 27, 2017 with residents and property owners that are affected by the improvements, both in Hopkins and St. Louis Park. The City Engineer and Bolton & Menk, Inc. representatives presented the scope of the project with a discussion of existing and proposed street and utility conditions, proposed bicycle and pedestrian facilities, and project schedule. Feedback from the residents are documented in Appendix D of this report. Details related to assessment computation and payment options were not provided at this meeting because St. Louis Park residents will not be assessed. There will be a 2nd neighborhood meeting on November 1, 2017 for Hopkins residents only. This meeting will go over the proposed project costs and special assessments. There will also be a 2nd neighborhood meeting on November 14, 2017 for St. Louis Park residents only, which will focus on the sidewalk and bike lane improvements along Texas Avenue.

Residents within the project area were also mailed questionnaires in July shown in Appendix D. Fifteen questionnaires were returned with comments. The most common questionnaire responses related to:

- a. Specific drainage problems
- b. Opposition to any sidewalk improvements
- c. Desire for additional sidewalks
- d. Dead or dying trees in the neighborhood
- e. A desire to widen Oxford St and Cambridge St near Texas Ave
- f. Reducing the slope of the hill on Cambridge St and Oxford St
- g. Individual sewer and water service problems, history of backups/root blockages
- h. Other unique issues specific to individual properties (individual tree conditions, water service line, driveways, landscaping, etc.)

6. ESTIMATED COSTS

Estimated construction costs presented in this report include a 10 percent contingency factor. Overhead costs, estimated at 21 percent, include legal, engineering, administrative and fiscal

costs. Final costs and assessments will be determined by using low-bid construction costs of the proposed work.

Proposed construction costs for the 2018 Street and Utility Improvements (including curb and gutter, bituminous street, pedestrian facilities, storm sewer, sanitary sewer, water main, and turf restoration) are itemized in Appendix A and are summarized in Table 6.1 below. These cost estimates are based upon public construction cost information. Because the consultant has no control over the cost of labor, materials, competitive bidding process, weather conditions and other factors affecting the cost of construction, all cost estimates are opinions for general information of the client and no warranty or guarantee as to the accuracy of construction cost estimates is made. It is recommended that costs for project financing should be based upon actual, competitive bid prices with reasonable contingencies.

Table 6.1

SUBTOTAL OF PROPOSED STREET IMPROVEMENTS	\$1,988,600.00
SUBTOTAL OF PROPOSED STORM SEWER IMPROVEMENTS	\$ 145,900.00
SUBTOTAL OF PROPOSED WATER MAIN IMPROVEMENTS	\$ 860,600.00
SUBTOTAL OF PROPOSED SANITARY SEWER IMPROVEMENTS	\$ 1,336,800.00
STREET & UTILITY SUBTOTAL	\$4,342,000.00
STREET & UTILITY SUBTOTAL CONTINGENCIES (10%)	\$4,342,000.00 \$ 434,200.00
STREET & UTILITY SUBTOTAL CONTINGENCIES (10%) ENGINEERING AND ADMINISTRATION (21%)	\$4,342,000.00 \$ 434,200.00 \$ 1,003,000.00
STREET & UTILITY SUBTOTAL CONTINGENCIES (10%) ENGINEERING AND ADMINISTRATION (21%) TOTAL ESTIMATED COST	\$4,342,000.00 \$ 434,200.00 \$ 1,003,000.00 \$5,779,200.00

7. Assessment Rates

Street improvements throughout the project area will be assessed to adjacent and benefitting properties according to the City of Hopkins' assessment policy. St. Louis Park residents will not be assessed. Street improvement work includes pavement and sidewalk removals, grading, subgrade correction, aggregate base, curbing, sidewalks, driveways and pavements construction, and restoration.

According to the City's assessment policy, residential street improvement costs are assessed to the benefitting properties. In summary, assessments to benefitting properties are determined based on the following criteria:

- Properties are assessed based on 70% of the actual street improvement costs. This is referred to as a "Street Assessment".
 - North/South Avenue improvements are typically assessed to properties with direct frontage based on a front foot basis (length) along the Avenue
 - East/West Street improvements are typically assessed to properties located within one block north/south of the Street on a unit basis (per each property)

- For this project, all of the streets have properties with direct frontage. Therefore, assessments for all of the streets were treated in similar fashion to north/south Avenues.
- "Street Assessments" to any individual property are capped at front foot rate increase annually by 3% over the prior year's amount. An assessment cap for residential properties of \$88.89 per front foot has been established by adding 3% to the 2017 assessment cap according to City policy. This cap is applied only to single-family and two-family residential properties in the project area and is not applicable to the following properties; 1321 Division Street (Division Street Property Apartments), 1301 Cambridge Street (Cambridge Towers), 1210/1220 Cambridge Street (Sela Investments Apartments), 525 Blake Road N (Commercial Building), 1202-1304 Oxford Street (Oxford Village), and 1328 Lake Street NE (Creekwood Estates Apartments). These six apartment and commercial properties in the neighborhood will receive a benefit appraisal to determine an accurate assessment amount.
- Utility (sanitary sewer, storm sewer, water) main improvements are 100% paid by the respective utility funds. No assessment for utility mains is proposed and there costs do not contribute to either the "Street Assessments" or "Utility Assessments".
- Utility service lines are owned by the individual property per City Code. As a result, the City assesses for the cost of the individual service line replacements. This is referred to as a "Utility Assessment". The City participates in a share of these costs because the replacement is mandatory where mains are reconstructed, and therefore properties are assessed for only 50% of the cost of the service replacement.
- The estimated cost of the water service replacement from the main to property line is \$2,600. With the proposed 50/50 "Utility Assessment" split, \$1300 will be assessed to each property where water services are replaced. The estimated cost of the sewer service replacement from the main to the property line is \$2,000. With the proposed 50/50 "Utility Assessment" split, \$1,000 will be assessed to each property where sewer services are replaced. Thus, a property proposed to receive both a new water service and sewer service would have a proposed "Utility Assessment" of \$2,300.

In the case that sanitary sewer services are made of Orangeburg or Transite, or are in disrepair, replacement or lining of the entire line will also be required from the property line to the house. On past projects, the property owner has been given one year to affect the necessary repairs and the City will provide the option to use the City's Contractor to perform this work and be fully assessed to the property owner

A preliminary assessment roll is included in Appendix C of this report. Total estimated assessments are \$1,073,630.41.

8. RIGHT-OF-WAY/EASEMENTS/PERMITS

The majority of the proposed improvements will be limited to the existing street ROW along all corridors. Temporary construction easements may be needed for work outside the street ROW such as driveway apron replacement, grading and turf restoration.

Permits will be required from the Minnesota Pollution Control Agency for grading (National Pollutant Discharge Elimination System permit), Minnesota Department of Health for Water Main Replacement, and the Minnehaha Creek Watershed District.

9. PROJECT SCHEDULE

If this Preliminary Engineering Report is accepted by the City Council, the following schedule is proposed:

Order Public Improvement Hearing	
g	
Conduct Public Improvement Hearing	December 5, 2017
Order Final Plans & Specifications	December 5, 2017
Final Design	December 6 – March 6, 2018
Present Final Plans / Authorize Ad for Bids	March 6, 2018
Open Bids	April 12, 2018
Accept Bids / Order Public Assessment Hearing	April 17, 2018
Conduct Public Assessment Hearing / Adopt Assessment Roll /	
Award Project	May 15, 2018
Construction	May/June – November 2018

10. FEASIBILITY AND RECOMMENDATION

From an engineering standpoint, this project is feasible, cost effective, and necessary and can best be accomplished by letting competitive bids for the work. It is recommended that the work be done under one contract in order to complete the work in an orderly and efficient manner. The City, its financial consultant, and the persons assessed will have to determine the economic feasibility of the proposed improvements.

Appendix A:

Preliminary Cost Estimate

ENGINEER'S ESTIMATE 2018 STREET & UTILITY IMPROVEMENTS CITY OF HOPKINS, MN BMI PROJECT NO. T19.114259

				ESTIMATED QUANTITIES						ESTIMATED STREET COSTS BY CORRIDOR								TOTAL ESTIMATED COSTS												
ITEM								STREET						UTILITIES						STREET							UTILITIES			
NO.	ITEM	UNIT	UNIT PRICE	Murphy	Camb	rida Texas	5 Texas	Division St	Division St	Lake St		STREET	SANITARY		STORM			Cambridge	Texas Ave	Texas Ave D	vivision St	Divison St			STREET	SANITARY		STORM	TOTAL	
				St	Oxford St e S	Ave	Ave SLP	Hopkins	SLP	NE	Alley	TOTAL	SEWER	WATER	SEWER	Murphy St	Oxford St	St	Hopkins	SLP	Hopkins	SLP	Lake St NE	Alley		SEWER	WATER	SEWER	QUANTITY	TOTAL COST
						норки	15						-						-		-					-				
1	MOBILIZATION	LUMP SUM	\$ 250,000.00	0.05	0.08 0.0	9 0.08	0.08	0.03	0.03	0.14	0.03	0.61	0.16	0.16	0.07	\$ 12,500	\$ 20,000	\$ 22,500	\$ 20,000	\$ 20,000 \$	7,500	\$ 7,500 \$	35,000	\$ 7,500 \$	152,500	\$ 40,000	\$ 40,000	\$ 17,500	1.00	\$ 250,000
2	CLEARING AND GRUBBING (TREE)	EACH	\$ 235.00	0	10 4	2	8	6	2	12	0	44	0.16	0.16	0.07	\$ -	\$ 2,350	\$ 940	\$ 470	\$ 1,880 \$	1,410	\$ 470 \$	2,820	\$ - \$	10,340	\$ - ¢ 226	\$ -	\$ - \$ 147	44	\$ 10,300 \$ 2,100
4	REMOVE BITUMINOUS PAVEMENT (TRAILS AND DRIVEWAYS)	SQ YD	\$ 2,100.00	83	183 28	3 62	42	167	63	0.14	42	925	0.16	0.16	0.07	\$ 105	\$ 915	\$ 1.415	\$ 310	\$ 210 \$	835	\$ 03 \$ \$ 315 \$	- 294	\$ 210 \$	4.625	\$ 330	\$ 330 \$ -	\$ 147 \$ -	925	\$ <u>2,100</u> \$ 4.600
5	REMOVE CONCRETE PAVEMENT (WALKS, DRIVEWAYS, AND ALLEYS)	SQ YD	\$ 7.00	146	719 83	5 184	174	83	42	837	50	3070				\$ 1,022	\$ 5,033	\$ 5,845	\$ 1,288	\$ 1,218 \$	581	\$ 294 \$	5,859	\$ 350 \$	21,490	\$ -	\$ -	\$ -	3070	\$ 21,500
6	REMOVE CURB & GUTTER	LIN FT	\$ 3.00	59	1221 155	8 946	1416	781	781	2600	0	9362				\$ 177	\$ 3,663	\$ 4,674	\$ 2,838	\$ 4,248 \$	2,343	\$ 2,343 \$	7,800	\$ - \$	28,086	s -	s -	\$ -	9362	\$ 28,100
7	REMOVE CONCRETE STEP	EACH	\$ 200.00 \$ 15.00	0	10 10	0 0	0	0	0	100	0	20				\$ - \$	\$ 2,000 \$ 1,500	\$ 2,000 \$ 1,500	\$ - \$	\$ - \$ \$	-	\$ - \$ \$	- 1 500	\$ - \$ \$	4,000	\$ - \$	\$ - \$	\$ - ¢ -	20	\$ 4,000 \$ 4,500
9	SALVAGE & REINSTALL FENCE	LIN FT	\$ 25.00	0	20 20) 0	20	0	0	20	0	80				\$ -	\$ 500	\$ 500	\$ -	\$ 500 \$	-	\$ - \$	500	\$ - \$	2,000	\$ -	\$ -	\$ -	80	\$ 2,000
10	SAWING CONCRETE PAVEMENT (FULL-DEPTH)	LIN FT	\$ 4.50	94	56 13	1 75	75	19	0	113	113	676				\$ 423	\$ 252	\$ 590	\$ 338	\$ 338 \$	86	\$-\$	509	\$ 509 \$	3,042	\$-	\$-	\$-	676	\$ 3,000
11	SAWING BITUMINOUS PAVEMENT (FULL-DEPTH)	LIN FT	\$ 2.50	75	206 31	9 56	38	150	56	169	94	1163				\$ 188	\$ 515	\$ 798	\$ 140	\$ 95 \$	375	\$ 140 \$	423	\$ 235 \$	2,908	\$-	\$-	\$ -	1163	\$ 2,900
12	COMMON EXCAVATION	CU YD	\$ 18.00	784	3107 340	8 1367 6 77	1768	979	954	3592	405	16364	_	-		\$ 14,112	\$ 55,926	\$ 61,344	\$ 24,606	\$ 31,824 \$ \$ 1,674 \$	17,622	\$ 17,172 \$	64,656	\$ 7,290 \$	294,552	s -	\$ - \$	\$- \$-	16364	\$ 294,600 \$ 20,700
14	SELECT GRANULAR BORROW	CU YD	\$ 12.00	396	1621 182	28 845	1018	512	512	2474	317	9523				\$ 4,752	\$ 19,452	\$ 21,936	\$ 10,140	\$ 12,216 \$	6,144	\$ 6,144 \$	29,688	\$ 3,804 \$	114,276	\$ -	\$ - \$ -	\$ -	9523	\$ 114,300
15	TOPSOIL BORROW (SPECIAL)	CU YD	\$ 35.00	92	298 30	3 139	198	98	98	321	0	1547				\$ 3,220	\$ 10,430	\$ 10,605	\$ 4,865	\$ 6,930 \$	3,430	\$ 3,430 \$	11,235	\$-\$	54,145	\$-	\$-	\$-	1547	\$ 54,100
16	EXPLORATORY EXCAVATION	HOUR	\$ 450.00	2	4 4	8	8	4	2	12	2	46				\$ 900	\$ 1,800	\$ 1,800	\$ 3,600	\$ 3,600 \$	1,800	\$ 900 \$	5,400	\$ 900 \$	20,700	\$ -	\$-	\$-	46	\$ 20,700
17	CLASS 5 AGGREGATE SUPEACING (CRAVEL DRIVEWAY)	TON	\$ 16.00	542	2199 250	1089	1418	696	652	2831	625	12558		-		\$ 8,672	\$ 35,184	\$ 40,096	\$ 17,424	\$ 22,688 \$	11,136	\$ 10,432 \$ \$ 270 \$	45,296	\$ 10,000 \$	200,928	۰ ۰	s -	s -	12558	\$ 200,900
19	MILL OR RECLAIM BITUMINOUS SURFACE	SQ YD	\$ 2.00	1001	3737 431	5 1911	2907	1102	1102	3908	771	20754				\$ 2,002	\$ 7,474	\$ 8,630	\$ 3,822	\$ 5,814 \$	2,204	\$ 2,204 \$	7,816	\$ 1,542 \$	41,508	\$ -	\$ -	\$-	20754	\$ 41,500
20	BITUMINOUS WEARING COURSE (SPWEA240C)	TON	\$ 66.00	109	454 52	8 201	270	142	142	513	0	2359				\$ 7,194	\$ 29,964	\$ 34,848	\$ 13,266	\$ 17,820 \$	9,372	\$ 9,372 \$	33,858	\$-\$	155,694	\$ -	\$ -	\$-	2359	\$ 155,700
21	BITUMINOUS NON-WEARING COURSE (SPNWB230C)	TON	\$ 60.00	109	454 52	8 201	270	142	142	513	0	2359	-			\$ 6,540	\$ 27,240	\$ 31,680	\$ 12,060	\$ 16,200 \$	8,520	\$ 8,520 \$	30,780	\$ - \$	141,540	\$ - e	\$ - ¢	ş -	2359	\$ 141,500
22	3" BITUMINOUS DRIVEWAY & PAVEMENT (SPWEA240B)	SQ YD	\$ 30.00	55 83	200 23	, 105 3 62	160	61 167	63	215	42	925	-	1		9 193 \$ 2.490	¢ /21 \$ 5.490	9 830 \$ 8.490	9 308 \$ 1.860	9 560 \$ \$ 1.260 \$	214		/53	÷ - 5 \$ 1,260 \$	27,750	s -	° - S -	ۍ د ۲	925	\$ 3,900 \$ 27.800
24	MODULAR BLOCK RETAINING WALL	SQ FT	\$ 35.00	0	200 20	0 0	0	0	0	200	0	600				\$ -	\$ 7,000	\$ 7,000	\$ -	\$ - \$	-	\$ - \$	7,000	\$ - \$	21,000	\$ -	\$ -	\$ -	600	\$ 21,000
25	4" CONCRETE WALK	SQ FT	\$ 5.00	0	5168 506	61 0	5190	0	0	7530	0	22949				\$ -	\$ 25,840	\$ 25,305	\$ -	\$ 25,950 \$	-	\$ - \$	37,650	\$ - \$	114,745	\$ -	\$ -	\$ -	22949	\$ 114,700
26	TRUNCATED DOMES	SQ FT	\$ 50.00	0	24 24	0	0	0	0	48	0	96				\$-	\$ 1,200	\$ 1,200	\$ -	\$ - \$	-	<u>\$</u> -\$	2,400	\$ - \$	4,800	\$ - e	\$ - ¢	\$ - ¢	96	\$ 4,800
27	B618 CONCRETE CURB & GUTTER	LIN FT	\$ 14.00	744	2411 245	57 200	0	797	797	2604	610	10620	1	1		\$ 10.416	\$ 33.754	\$ 34.398	\$ 2.800	<u> </u>	11.158	\$ 11.158 \$	36.456	\$ 8,540 \$	2,500	\$ -	\$ -	ş -	10620	\$ 148.700
29	B660 CONCRETE CURB & GUTTER	LIN FT	\$ 45.00	0	0 0	1124	1605	0	0	0	0	2729				\$ -	\$ -	\$ -	\$ 50,580	\$ 72,225 \$	-	\$ - \$		\$ - \$	122,805	\$ -	\$ -	\$ -	2729	\$ 122,800
30	6" CONCRETE DRIVEWAYS & PEDESTRIAN RAMPS	SQ YD	\$ 60.00	146	178 29	4 184	174	83	42	0	50	1151				\$ 8,760	\$ 10,680	\$ 17,640	\$ 11,040	\$ 10,440 \$	4,980	\$ 2,520 \$		\$ 3,000 \$	69,060	s -	\$ -	\$ -	1151	\$ 69,100
31	b CUNCRETE ALLEY ALLEY CONCRETE TIF-BARS	SQ YD FACH	\$ 60.00 \$ 15.00	0	0 0	0	0	0	0	0	694 260	694 260	-	1		ə - S -	s -	ə - S -	ə - S -	ə - Ş S - C	-	<u> </u>	-	\$ 3,900 \$	3 900		ə - S -	s -	694 260	\$ 41,600 \$ 3,900
33	TRAFFIC CONTROL	LUMP SUM	\$ 15,000.00	0.05	0.08 0.0	9 0.08	0.08	0.03	0.03	0.14	0.03	0.61	0.16	0.16	0.07	\$ 750	\$ 1,200	\$ 1,350	\$ 1,200	\$ 1,200 \$	450	\$ 450 \$	2,100	\$ 450 \$	9,150	\$ 2,400	\$ 2,400	\$ 1,050	1.00	\$ 15,000
34	ZEBRA CROSSWALK BLOCK - WHITE LATEX	SQ FT	\$ 1.50	0	108 10	8 216	324	0	0	216	0	972				\$-	\$ 162	\$ 162	\$ 324	\$ 486 \$	-	\$ - \$	324	\$ - \$	1,458	\$-	\$-	\$ -	972	\$ 1,500
35	4" SOLID LINE - YELLOW LATEX	LIN FT	\$ 1.00	0	0 120	22	/50	0	0	1050	0	3750	_	-		\$ -	\$ - \$ 1320	\$ 1,200	\$ 750	\$ 750 \$ \$ 2970 \$	-	\$ - \$ \$ 000 \$	1,050	\$ - \$ \$	3,750	s -	\$ - \$	\$- \$-	3750	\$ 3,800
37	SIGN PANELS (TYPE C)	SQ FT	\$ 18.00	6	12 10) 38	30	0	12	14	0	122				\$ 108	\$ 216	\$ 180	\$ 684	\$ 540 \$	-	\$ 216 \$	252	\$ - \$	2,196	\$ -	\$ -	\$-	122	\$ 2,200
38	SIGN PANELS (TYPE D)	SQ FT	\$ 20.00	0	3 3	5	5	2	0	3	0	21				\$-	\$ 60	\$ 60	\$ 100	\$ 100 \$	40	\$-\$	60	\$-\$	420	\$-	\$-	\$-	21	\$ 400
39	LANDSCAPE ALLOWANCE	LUMP SUM	\$ 20,000.00	0.05	0.08 0.0	9 0.08	0.08	0.03	0.03	0.14	0.03	0.61	0.16	0.16	0.07	\$ 1,000	\$ 1,600	\$ 1,800	\$ 1,600	\$ 1,600 \$	600	\$ 600 \$	2,800	\$ 600 \$	12,200	\$ 3,200	\$ 3,200	\$ 1,400	1.00	\$ 20,000
40	DECIDUOUS TREE - 2-INCH DIAMETER B&B (SUGAR MAPLE)	EACH	\$ 400.00	0	2 1	1	2	1	1	2	0	10				s -	\$ 800	\$ 400	\$ 400	\$ 800 \$	400	\$ 400 \$	800	ş - ş S - S	4,000	s -	ş -	s -	10	\$ 4,000
42	DECIDUOUS TREE - 2-INCH DIAMETER B&B (PARKWAY NORWAY MAPLE)	EACH	\$ 400.00	0	2 1	0	1	1	0	2	0	7				\$ -	\$ 800	\$ 400	\$ -	\$ 400 \$	400	\$ - \$	800	\$ - \$	2,800	\$ -	\$ -	\$-	7	\$ 2,800
43	DECIDUOUS TREE - 2-INCH DIAMETER B&B (RED OAK)	EACH	\$ 400.00	0	2 1	0	1	1	0	2	0	7				\$-	\$ 800	\$ 400	\$-	\$ 400 \$	400	\$ - \$	800	\$ - \$	2,800	\$-	\$-	\$ -	7	\$ 2,800
44	DECIDUOUS TREE - 2-INCH DIAMETER B&B (GREENSPIRE LINDEN) DECIDUOUS TREE - 2-INCH DIAMETER B&B (PRINCETON AMERICAN FLM)	EACH	\$ 400.00	0	1 1	0	1	1	0	2	0	6				s -	\$ 400 \$ 400	\$ 400 \$ 400	\$ - \$ -	\$ 400 \$ \$ 400 \$	400	<u>s</u> - s	800	\$ · \$	2,400	s -	\$ - \$ -	s -	6	\$ 2,400 \$ 2,400
46	INLET PROTECTION	EACH	\$ 220.00	Ő	8 8	32	12	6	0	7	0	73				\$-	\$ 1,760	\$ 1,760	\$ 7,040	\$ 2,640 \$	1,320	\$ - \$	1,540	\$ - \$	16,060	\$ -	\$-	\$-	73	\$ 16,100
47	SILT FENCE	LIN FT	\$ 2.00	0	0 0	0	0	0	0	300	0	300				\$ -	\$ -	\$-	\$ -	\$ - \$	-	\$ - \$	600	\$-\$	600	\$ -	\$ -	\$ -	300	\$ 600
48	STREET SWEEPER WITH OPERATOR	HOUR	\$ 150.00	6	10 10	3 1561	2220	4	4	3617	0	74				\$ 900 \$ 4132	\$ 1,500 \$ 13.396	\$ 1,500 \$ 13,652	\$ 1,800	\$ 1,800 \$ \$ 8,916 \$	600	\$ 600 \$ \$ 4428 \$	2,400	\$ - \$ \$	11,100	\$ - \$	\$ - \$	\$ - ¢ -	74	\$ 11,100 \$ 69,700
49	REMOVE SANITARY SEWER PIPE	LIN FT	\$ 6.00	1033	3345 341	3 1301	2223	1107	1107	3017	0	17410	4853			\$ +,132	\$ -	\$ 13,032	\$ -	\$ - \$	4,420	\$ - \$	- 14,400	S	- 09,004	\$ 29,118	s -	ş -	4853	\$ 29,100
51	REMOVE SANITARY MANHOLE	EACH	\$ 500.00										22			\$-	\$ -	\$-	\$ -	\$-\$	-	\$ - \$	-	\$-\$	-	\$ 11,000	\$-	\$-	22	\$ 11,000
52	SANITARY MANHOLE CASTING	EACH	\$ 1,050.00										22			\$ -	\$ - ¢	\$ - ¢	\$ -	\$ - \$ ¢ ¢	-	\$ - \$ ¢ ¢	-	\$ - \$ ¢	-	\$ 23,100	\$ - ¢	\$ - ¢	22	\$ 23,100
54	12" PVC SDR 35 SANITARY SEWER PIPE	LIN FT	\$ 85.00										1411			\$ -	\$ -	ş -	\$ -	s - s		s - s		s - s		\$ 119,935	s -	s -	1411	\$ 119,900
55	LINE 8" SANITARY SEWER PIPE	LIN FT	\$ 22.00										2377			\$ -	\$ -	\$-	\$ -	\$-\$	-	\$ - \$	-	\$ - \$	-	\$ 52,294	\$ -	\$ -	2377	\$ 52,300
56	12" x 6" SDR 26 PVC SERVICE WYE	EACH	\$ 700.00				_					_	38			\$ -	\$ -	\$ -	\$ -	<u>\$</u> -\$	-	<u>\$</u> -\$	-	\$ - \$		\$ 26,600	\$ -	<u>\$</u> -	38	\$ 26,600
57	6" PVC SDR 26 SANITARY SEWER SERVICE PIPE 8" x 6" SDR 26 PVC SERVICE WYF	EACH	\$ 37.00										1688			s -	s -	\$ - \$ -	\$ - \$ -	s - s	-	s - s	-	> - > S - S		\$ 62,456	s -	\$- \$-	1688	\$ 62,500
59	SANITARY MANHOLE	EACH	\$ 3,500.00										22			\$-	\$ -	\$-	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ 77,000	\$-	\$ -	22	\$ 77,000
60	RECONNECT SANITARY SEWER SERVICE	EACH	\$ 340.00										97			\$ -	s -	\$ -	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ 32,980	\$ -	\$ -	97	\$ 33,000
61 62	CONNECT TO EXISTING SANITARY SEWER PIPE	EACH	\$ 615,000.00										1			s -	s -	э - \$ -	ъ - \$ -	э - Ş S - S	-	\$ - \$ \$ - \$	-	s - s		\$ 615,000 \$ 6.000	> - S -	s -	5	\$ 615,000 \$ 6.000
63	REMOVE WATERMAIN	LIN FT	\$ 4.50											3710		\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ - \$		\$ - \$	-	\$ -	\$ 16,695	\$ -	3710	\$ 16,700
64	ABANDON WATERMAIN	LIN FT	\$ 6.00											307		\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	s -	\$ 1,842	\$ -	307	\$ 1,800
66	CONNECT TO EXISTING WATER MAIN	EACH	\$ 430.00 \$ 1,600.00											6		s -	\$ - \$ -	\$- \$-	ъ - \$ -	> - \$ \$ - \$	-	s - s	-			s -	\$ 4,730 \$ 9,600	s - S -	6	\$ 4,700 \$ 9,600
67	HYDRANT	EACH	\$ 4,250.00											11		\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ - \$		\$ - \$	-	\$ -	\$ 46,750	\$ -	11	\$ 46,800
68	12" BUTTERFLY VALVE & BOX	EACH	\$ 2,200.00											17		\$ -	s -	\$-	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ -	\$ 37,400	\$-	17	\$ 37,400
69	8" GATE VALVE & BOX	EACH	\$ 2,000.00											12		3 - S	s -	\$ - \$	5 - 5	\$ - \$ \$	-	5 - <u>\$</u>	-	5 - S	-	5 - c	\$ 24,000	s -	12	\$ 24,000
71	8" DIP WATER MAIN	LIN FT	\$ 45.00											2287		\$ -	\$ -	\$ -	\$ -	\$ - S	-	\$ - \$		\$ - \$		\$ -	\$ 102,915	\$ -	2287	\$ 102,900
72	6" DIP WATER MAIN	LIN FT	\$ 42.00											220		\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ -	\$ 9,240	\$ -	220	\$ 9,200
73	12" DIP WATER MAIN	LIN FT	\$ 65.00											3247		\$ - ¢	ş -	\$ - ¢	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ - ¢	\$ 211,055	s -	3247	\$ 211,100
75	DIRECTIONAL DRILL 8" WATERMAIN	LIN FT	\$ 135.00											307		\$ -	\$ -	\$ -	\$ -	\$ - \$		\$ - \$		\$ - \$		\$ -	\$ 41.445	\$ -	307	\$ 41.400
76	DIRECTIONAL DRILL 12" WATERMAIN	LIN FT	\$ 160.00											52		\$-	\$-	\$-	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$		\$-	\$ 8,320	\$-	52	\$ 8,300
77	1" TYPE K COPPER SERVICE PIPE	LIN FT	\$ 32.00											2855		\$ -	s -	\$ -	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	s -	\$ 91,360	ş -	2855	\$ 91,400
79	1" CORPORATION STOP	EACH	\$ 460.00											104		ş - S -	ş -	φ - \$ -	ş - \$ -	\$ - \$ \$ - \$	-	s - s	-	ş - Ş S - S		s -	\$ 38,480 \$ 47.840	ş - S -	104	\$ 38,500 \$ 47,800
80	CONNECT TO EXISTING WATER SERVICE	EACH	\$ 275.00											104		\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ -	\$ 28,600	\$ -	104	\$ 28,600
81	TEMPORARY WATER SERVICE	EACH	\$ 500.00					_						104	0.17	\$ -	s -	\$ -	\$ -	\$ - \$	-	\$ - \$	-	\$ - \$	-	\$ -	\$ 52,000	\$ -	104	\$ 52,000
82	REMOVE STORM SEWER PIPE	LIN FT EACH	\$ 7.00 \$ 350.00												818 30	\$ - \$ -	s -	\$ - \$ -	\$ - \$	\$ - \$ \$ - \$	-	\$ - \$ \$ - \$	-	\$ - \$ \$. \$	-	\$ ·	3 - S	\$ 5,726 \$ 10,500	818 30	\$ 5,700 \$ 10,500
84	STORM SEWER CASTING	EACH	\$ 800.00												33	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ - \$		\$ - \$		\$ -	\$ -	\$ 26,400	33	\$ 26,400
85	15" RC PIPE SEWER CL V DESIGN 3006 (STORM)	LIN FT	\$ 42.00												865	\$-	\$ -	\$-	\$ -	\$-\$	-	\$ - \$	-	\$ - \$	-	\$-	\$-	\$ 36,330	865	\$ 36,300
86	STORM MANHOLE STORM CATCH BASIN	EACH	\$ 1,800.00												2	s -	s -	\$- \$-	s -	\$ - \$ \$	-	5 - S	-	\$ - \$ \$. e	-	5 -	s - s	\$ 3,600 \$ 37,200	2	\$ 3,600 \$ 37,200
88	CONNECT TO EXISTING STORM PIPE	EACH	\$ 1,000.00												6	\$ -	\$ -	\$ -	\$ -	\$-\$	-	\$ - \$		\$ - \$		\$ -	\$ -	\$ 6,000	6	\$ 6,000
SUBTO	ÚTAL															\$ 92,100	\$ 339,900	\$ 375,700	\$ 207,500	\$ 282,100 \$	105,900	\$ 94,300 \$	408,500	\$ 92,500 \$	1,998,600	\$ 1,336,800	\$ 860,600	\$ 145,900		\$ 4,342,000
CONTI	NGENCIES (10%) FERING AND ADMINISTRATION (21%)															\$ 9,200 \$ 21,300	\$ 34,000 \$ 78,500	\$ 37,600 \$ 86,800	\$ 20,800	\$ 28,200 \$ \$ 65,200 ¢	10,600	\$ 9,400 \$ \$ 21,800 \$	40,900	\$ 9,300 \$ \$ 21.400 °	199,900	\$ 133,700	\$ 86,100 \$ 108,800	\$ 14,600 \$ 33,700		\$ 434,200 \$ 1,003,000
TOTA	AL ESTIMATED PROJECT COST															\$ 122,600	\$ 452,400	\$ 500,100	\$ 276,200	\$ 375,500 \$	141,000	\$ 125,500 \$	543,800	\$ 123,200 \$	2,660,200	\$ 1,779,300	\$ 1,145,500	\$ 194,200		\$ 5,779,200

Appendix B: Figures

Sheet 2.3

www.bolton-menk.com

© Bolton & Menk, Inc. 2017, All Rights Reserved H:\HOPK\T19114259\CAD\C3D\Prelim Layouts\TEXASLAYOUTS.dwg 10/24/2017 1:44 PM

TEXAS AVENUE SOUTH ALTERNATIVE LAYOUT 1

Sheet 3.1

© Bolton & Menk, Inc. 2017, All Rights Reserved H:\HOPK\T19114259\CAD\C3D\Prelim Layouts\TEXAS LAYOUTS.dwg 10/24/2017 1:44 PM

Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com www.bolton-menk.com

TEXAS AVENUE SOUTH ALTERNATIVE LAYOUT 2

Sheet 3.2

Appendix C:

Preliminary Assessment Roll

PRELIMINARY ASSESSMENT ROLL 2018 STREET & UTILITY IMPROVEMENTS CITY OF HOPKINS, MN BMI PROJECT NO. T19.114259

R'S SUBD, NO, 363

LAKE ST N E

Α 10/10/201 FRONT FOOT ASSESSMENTS STREET ADDITION ADJUSTE SUBTOTAL ASSESSME ADDITION NAME ADDRESS OWNER NAME OWNER NAME 2 GROUP PID FRONT DIVISION TEXAS CAMBRIDG OXFORD LAKE ST ALLEY LAKE SUBTOTAL UNIT CODE FRONT MURPHY ST FRONT FOOT WITHOUT C. FOOTAGE ST AVE S E ST ST ST NE ASSESSMEN NE CONSIDER FOOTAG SSESSMEN REAT LAKE HOME BLDRS LLC 3-191172111000 ITOR'S SUBD. NO. 239 DIVISION ST 9,516 9,516 3-1911721110006 IDITOR'S SUBD. NO. 239 37110 1426 DIVISION ST IATALIE J & AARON R MORLAND А 60.00 158.61 9,516.6 9,516 ITOR'S SUBD. NO. 239 37110 DIVISION ST 60.0 158.61 9,516. 9,516 DITOR'S SUBD. NO. 239 37110 1418 IVISION ST 60.00 158.61 9,516.6 9,51 3-1911721110004 URE DEVELOPMENTS L Α 9,516 1911721110002 ITOR'S SUBD. NO. 239 37110 VISION ST 60.00 158.61 9,516. AUDITOR'S SUBD. NO. 239 37110 1416 DIVISION ST Α 60.00 158.61 9,516.60 9,516 3-1911721110001 DITOR'S SUBD. NO. 239 37110 1406 DIVISION ST HOMAS YARDIC & ROBIN YA Α 122.29 158.6 19,396.4 3-1911721110030 NTOR'S SUBD. NO. 239 37110 5 NDRE M PLEASANT 74.92 23,262.6 23,262 EXAS AVE 23,961 15,525 3-1911721110109 Q R SMITH ADDN TO HOPKINS 37570 402 TEXAS AVE BINENSTOCK & C BINENSTOCK В 77.17 310.50 23,961.2 IDITOR'S SUBD. NO. 239 37110 60 50.00 15,525.0 3-1911721110012 EXAS AVE ANIEL L STOVER 310.50 В 3-1911721110008 IDITOR'S SUBD, NO. 239 37110 EXAS AVE OTT LUDWIG В 49.5 310.50 15,391.4 15,393 3-1911721110031 UDITOR'S SUBD. NO. 239 37110 514 TEXAS AVE ICHARD & DIANE ENGLUND В 89.81 310.50 27,886.0 27,886 3-1911721110009 IDITOR'S SUBD. NO. 239 37110 614 TEXAS AVE LVIA ARREGUI JIMENEZ 310.50 17,543.2 17,543 56.5 8-1911721110010 IDITOR'S SUBD. NO. 239 37110 6 TEXAS AVE BERGS ABODES TEXAS LL В 57.00 310.50 17,698.50 17,698 ERALD & MARLYS SCH 58.00 18,009 -1911721110011 DITOR'S SUBD. NO. 239 37110 60 EXAS AVE В 310.50 18,009.0 3-1911721110032 AUDITOR'S SUBD. NO. 239 37110 502 TEXAS AVE OU ANN OLSON 109.70 310.50 34.061.85 34,061 8,427 B 8,427.50 53-1911721110016 AUDITOR'S SUBD. NO. 239 37110 1417 50.00 \$ 168.55 \$ CAMBRIDGE ST HOMAS J SCHREINER С 3-1911721110026 AUDITOR'S SUBD. NO. 239 37110 1418 /ICHAEL/JANELLE SCHNECKLOTH 50.00 \$ 168.55 8,427.50 8,42 53-1911721110027 AUDITOR'S SUBD. NO. 239 37110 1422 CAMBRIDGE ST AQUILA PROPERTIES LLC С 49.06 \$ 168.55 8,269.06 8,269 9,767.47 9,767 AUDITOR'S SUBD. NO. 239 37110 1430 RIDA HABIB 57.95 \$ 168.55 3-1911721110029 CAMBRIDGE ST С 53-1911721110013 AUDITOR'S SUBD. NO. 239 37110 1429 R F & A L ANDERSON С 60.00 \$ 168.55 10,113.00 10,11 CAMBRIDGE ST 53-1911721110014 AUDITOR'S SUBD. NO. 239 37110 1425 CAMBRIDGE ST LIZABETH & THOMAS MILLER 60.00 \$ 168.55 10,113.0 10,113 53-1911721110015 AUDITOR'S SUBD. NO. 239 37110 1421 CAMBRIDGE ST ELIZABETH & THOMAS MILLER С 60.00 \$ 168.55 10,113.00 5 10,113 53-1911721110017 AUDITOR'S SUBD, NO. 239 37110 1413 CAMBRIDGE ST GARY J DUDA С 60.00 \$ 168.55 10.113.00 10.113 37110 1407 69.88 11,778.2 11,778 3-1911721110019 UDITOR'S SUBD. NO. 239 AMBRIDGE ST 168.55 53-1911721110028 AUDITOR'S SUBD, NO. 239 37110 1426 CAMBRIDGE ST ENJAMIN A & KRISTY NORDEEN С 80.80 \$ 168.55 13.618.84 37110 1410 11,124.30 11,124 53-1911721110122 AUDITOR'S SUBD. NO. 239 AMBRIDGE ST ARIO P LORETO 66.00 \$ 168.55 С 53-1911721110020 37110 1401 CAMBRIDGE ST 70.00 \$ 168.55 11.798.50 11,798 53-1911721110022 AUDITOR'S SUBD. NO. 239 37110 1406 CAMBRIDGE ST EITH WASHINGTO 66.67 \$ 168.55 11,237.23 11,237 С -1911721110025 AUDITOR'S SUBD. NO. 239 66.0 \$ 168.55 11,124.30 11,124 37110 1414 53-1911721110021 AUDITOR'S SUBD. NO. 239 37110 1402 CAMBRIDGE ST EPHEN & PENNY SHIM 66.73 \$ 168.55 \$ 11,247.34 11,24 С 69.89 11,779.96 3-1911721110018 AUDITOR'S SUBD. NO. 239 37110 1409 AMBRIDGE ST NDREW & NAOMI NEL 11,779 168.55 53-1911721110053 AUDITOR'S SUBD. NO. 239 37110 1315 ALFRED K PETERSON JR 140.00 125.00 \$ 168.55 \$ 21,068.75 21,068 CAMBRIDGE ST C 3-1911721110038 DITOR'S SUBD. NO. 239 37110 1403 DXFORD S NDREW CHAUSSEE 73.1 164.88 12,056. 12,05 NTOR'S SUBD. NO. 239 3711 SA ZAVALA RAMIR 8,244.0 8,244 1911721110064 OXFORD S 50.0 164.88 3-1911721110068 AUDITOR'S SUBD, NO. 239 37110 1306 OXFORD ST CHAD TU HENDERSON 55.00 164.88 9.068.40 9,068 D 9,068.40 9,068 37110 1213 YAN & PATRICIA GODFRE DITOR'S SUBD. NO. 239 55.00 164.88 3-1911721110061 OXFORD ST 37110 13 OXFORD ST 55.00 9,068.40 9,068 9,068 3-1911721110056 UDITOR'S SUBD. NO. 239 TEVEN D JOHNSON 164.88 -1911721110062 DITOR'S SUBD. NO. 239 37110 1 OXFORD S RAN PROPERTIES LI 55.00 164.88 9,068.4 3-1911721110059 AUDITOR'S SUBD. NO. 239 37110 1303 OXFORD ST 55.00 164.88 9,068.40 9,068 3-1911721110066 AUDITOR'S SUBD, NO. 239 37110 1316 OXFORD ST HAD BROVOLD D 55.00 164.88 9.068.40 9,068 37110 1309 9,068.4 9,068 DITOR'S SUBD. NO. 239 OBERT W GIBSON 55.00 164.88 3-1911721110057 D 3-1911721110063 IDITOR'S SUBD. NO. 239 37110 1205 OXFORD ST IK PROPERTIES LLC D 55.00 164.88 9,068.40 9,068 9,068 DITOR'S SUBD. NO. 239 37110 1305 CHARD D & DIANE M ENGLUND 55.00 164.88 9,068.4 3-1911721110058 OXFORD ST D 1911721110060 ITOR'S SUBD. NO. 239 37110 OTT R & DENISE SPORE 55.0 164.88 9,068.4 9,068 3-1911721110055 AUDITOR'S SUBD. NO. 239 37110 1319 OXFORD ST JASON LAWRENCE LAINE 55.00 164.88 9,068.40 9,068 1911721110065 NTOR'S SUBD. NO. 239 37110 132 OXFORD ST SSICA PLOWMAN 164.88 9,068.40 9,068 55.0 3-1911721110067 AUDITOR'S SUBD. NO. 239 37110 1312 OXFORD ST ROBERT & CHRISTINE JOHANSEN 55.00 164.88 9,068.40 9,068 9,574 37110 1429 OXFORD ST IAMIE R CLINE 58.07 164.88 9,574.58 53-1911721110033 AUDITOR'S SUBD. NO. 239 D 3-1911721110115 Q R SMITH ADDN TO HOPKINS 37570 1406 ELLY J NELSON 164.88 9,879.6 9,879 OXFORD ST 59.92 **R SMITH ADDN TO HOPKINS** 3-1911721110113 37570 1 DXFORD S LAN D HESS 69.91 164.88 11,526.3 11,52 R SMITH ADDN TO HOPKIN 37570 NDSAY WARNE 61.82 164.88 10,192.8 10,192 3-1911721110035 AUDITOR'S SUBD. NO. 239 37110 1417 OXFORD ST ANDRA HUNNER 77.83 164.88 12,832.61 12,832 D 37570 1414 ARIE A HUNNER 65.26 10,760. 3-1911721110111 Q R SMITH ADDN TO HOPKINS OXFORD ST 164.88 10,76 3-1911721110123 UDITOR'S SUBD. NO. 239 37110 1409 FFREY L PETERSO 164.88 10,807.88 10,807 OXFORD S 65.5 3-1911721110036 AUDITOR'S SUBD. NO. 239 37110 1413 OXFORD ST RANT MIXDORF 65.55 164.88 10,807.8 D 3-1911721110037 AUDITOR'S SUBD. NO. 239 37110 1405 RIC E KIRSCCHNER 164.88 10,989.2 10,989 OXFORD ST 66.65 3-1911721110034 AUDITOR'S SUBD, NO. 239 37110 1425 OXFORD ST MAX LUNDEEN & ANGELA LUNDEEN D 102.14 164.88 16.840.8 16,840 Q R SMITH ADDN TO HOPKINS 3-1911721110110 37570 1418 DXFORD S EIDI M JANZIG D 64.86 164.88 10,694.3 10,694 53-1911721110114 Q R SMITH ADDN TO HOPKINS 37570 1411 LAKE ST N E CARL D MCKINLEY E 78.44 \$ 217.33 17,047.37 17,047 053-1911721110108 Q R SMITH ADDN TO HOPKINS 37570 1423 LAKE ST N E D M BERG & C OLSON-BERG E 53.08 \$ 217.33 11,535.88 11,535 53-1911721110082 AUDITOR'S SUBD. NO. 239 37110 1323 LAKE ST N E ARIA MEZA 56.15 217.33 12,203.0 12,203 053-1911721110105 AUDITOR'S SUBD. NO. 363 37125 1312 LAKE ST N E MINNEHAHA CREEK WTRSHED DIST E 55.38 \$ 217.33 12,035.74 12,035 37570 1413 15,778.16 15,778 53-1911721110112 Q R SMITH ADDN TO HOPKINS LAKE ST N E DAVID WIEBELHAUS E 72.60 \$ 217.33 053-1911721110118 Q R SMITH ADDN TO HOPKINS 37570 1405 LAKE ST N E ESSO PROPERTIES LLC 67.00 \$ 217.33 14 561 11 14 56 F 37110 1317 LAKE ST N E E 56.15 12,203 053-1911721110083 AUDITOR'S SUBD. NO. 239 MICHELLE T SHARP \$ 217.33 12,203.08 3-1911721110120 AUDITOR'S SUBD. NO. 239 37110 1333 LAKE ST N E 104.1 \$ 217.33 22,624.0 22,624 E 53-1911721110124 AUDITOR'S SUBD. NO. 239 37110 1325 LAKE ST N E AMY H FRIESEN E 60.59 217.33 13,168.02 13,168 053-1911721110104 AUDITOR'S SUBD. NO. 363 37125 1316 LAKE ST N E RACHEL E BROWN ANI 55.30 217.33 12,018.35 12,018 053-1911721110117 Q R SMITH ADDN TO HOPKINS 37570 1403 LAKE ST N E ANNA T FELKEY LOVAS F 69.03 \$ 217.33 15,002.29 15,002 37110 1309 12,203.08 12,203 053-1911721110085 AUDITOR'S SUBD. NO. 239 C J I DEALWIS & C F DEALWIS 56.15 \$ 217.33 LAKE ST N E E 053-1911721110106 AUDITOR'S SUBD. NO. 363 37125 1308 LAKE ST N E INNEHAHA CREEK WTRSHED DIST F 55.40 217.33 12,040.08 12,040 12,007 053-1911721110102 AUDITOR'S SUBD. NO. 363 37125 1324 LAKE ST N E MICHAEL D MATTER F 55.25 217.33 12,007.48 3-1911721110103 37125 1320 11,990.10 AUDITOR'S SUBD. NO. 363 LAKE ST N E AUL G SICARD E 55.17 \$ 217.33 \$ 11,990 053-1911721110086 AUDITOR'S SUBD, NO. 239 37110 1305 LAKE ST N E INNEHAHA CREEK WTRSHED DIST E 56.15 \$ 217.33 12,203.08 12,203 LAKE ST N E EBRA BUTLER AUDITOR'S SUBD. NO. 239 37110 1313 56.15 12,203 53-1911721110084 \$ 217.33 12,203.0 MURPHY AVE 3-1911721110039 AUDITOR'S SUBD. NO. 239 37110 424 AMES C BROTHERTON JR 65.12 342.95 22,332.9 22,332 F 53-1911721110040 AUDITOR'S SUBD. NO. 239 37110 420 MURPHY AVE **AICHELLE J BEACOM** 65.12 342.95 22,332.90 22,332 F ITOR'S SUBD. NO. 23 20,577.0 3-1911721110042 AUDITOR'S SUBD. NO. 239 37110 43 RPHY AVE AVID P PETRUSKA 60.00 342.95 20.577.00 20,577 55.4 37125 1436 37125 1428 LAKE ST N E 55.40 217.33 4.480.00 HUA D JONES LAKE ST N E 55.40 217.33 12,040 4,480.0 4,480.0

		В				
NT AP ED	STREET ASSE ASSESSMENT RATE CAP PER FRONT FOOT	STREET ASSESSMENT PER CAP	PROPOSED STREET ASSESSMENT (Lesser of Column A or B)	PROPOSED SEWER SERVICE ASSESSMENT	PROPOSED WATER SERVICE ASSESSMENT	TOTAL PROPOSED ASSESSMENT
.60	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.60	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.60	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.60	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.60	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.60	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.42	\$ 88.89	\$ 10,870.36	\$ 10,870.36	\$ 1,000.00	\$ 1,300.00	\$ 13,170.36
.66	\$ 88.89	\$ 6,659.64	\$ 6,659.64	\$ 1,000.00	\$ 1,300.00	\$ 8,959.64
.29	\$ 88.89	\$ 6,859.64	\$ 6,859.64	\$ 1,000.00	\$ 1,300.00	\$ 9,159.64
.00	\$ 88.89	\$ 4,444.50	\$ 4,444.50	\$ 1,000.00	\$ 1,300.00	\$ 6,744.50
.49	\$ 88.89	\$ 4,406.28	\$ 4,406.28	\$ 1,000.00	\$ 1,300.00	\$ 6,706.28
.01	\$ 88.89	\$ 7,983.21	\$ 7,983.21	\$ 1,000.00	\$ 1,300.00	\$ 10,283.21
.25	\$ 88.89	\$ 5,022.29	\$ 5,022.29	\$ 1,000.00	\$ 1,300.00	\$ 7,322.29
.50	\$ 00.09 ¢ 00.00	\$ 5,000.75 \$ 5,000.75	\$ 5,000.75 \$ 5,000.75	\$ 1,000.00	\$ 1,300.00	\$ 7,500.75 \$ 7,65.62
95	\$ 88.89 ¢ 99.90	\$ 0,751.02	\$ 0,751.02	\$ 1,000.00	\$ 1,300.00	\$ 7,455.02
50	\$ 88.89	\$ 4 444 50	\$ 4 444 50	\$ 1,000.00	\$ 1,300.00	\$ 6 744 50
.50	\$ 88.89	\$ 4.444.50	\$ 4.444.50	\$ 1,000.00	\$ 1,300.00	\$ 6,744,50
.06	\$ 88.89	\$ 4,360.94	\$ 4,360.94	\$ 1,000.00	\$ 1,300.00	\$ 6,660.94
.47	\$ 88.89	\$ 5,151.18	\$ 5,151.18	\$ 1,000.00	\$ 1,300.00	\$ 7,451.18
.00	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.00	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.00	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.00	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.27	\$ 88.89	\$ 6,211.63	\$ 6,211.63	\$ 1,000.00	\$ 1,300.00	\$ 8,511.63
.84	\$ 88.89	\$ 7,182.31	\$ 7,182.31	\$ 1,000.00	\$ 1,300.00	\$ 9,482.31
.30	> 88.89	\$ 5,866.74	\$ 5,866.74	\$ 1,000.00	\$ 1,300.00	\$ 8,166.74
23	\$ 88.89	\$ 5,926.30	\$ 5,926,30	\$ 1,000.00	\$ 1,300.00	\$ 8,522.30 \$ 8,226.30
.30	\$ 88.89	\$ 5,866.74	\$ 5,866,74	\$ 1,000.00	\$ 1,300.00	\$ 8,166,74
.34	\$ 88.89	\$ 5.931.63	\$ 5,931.63	\$ 1,000.00	\$ 1,300.00	\$ 8.231.63
.96	\$ 88.89	\$ 6,212.52	\$ 6,212.52	\$ 1,000.00	\$ 1,300.00	\$ 8,512.52
.75	\$ 88.89	\$ 11,111.25	\$ 11,111.25	\$ 1,000.00	\$ 1,300.00	\$ 13,411.25
.03	\$ 88.89	\$ 6,499.64	\$ 6,499.64	\$ 1,000.00	\$ 1,300.00	\$ 8,799.64
.00	\$ 88.89	\$ 4,444.50	\$ 4,444.50	\$ 1,000.00	\$ 1,300.00	\$ 6,744.50
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
40	\$ 88.80	\$ 4,000.95 \$ 4,888.95	\$ 4,000.95	\$ 1,000.00	\$ 1,300.00	\$ 7,100.95
40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4.888.95	\$ 4.888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.40	\$ 88.89	\$ 4,888.95	\$ 4,888.95	\$ 1,000.00	\$ 1,300.00	\$ 7,188.95
.58	\$ 88.89	\$ 5,161.84	\$ 5,161.84	\$ 1,000.00	\$ 1,300.00	\$ 7,461.84
.61	\$ 88.89	\$ 5,326.29	\$ 5,326.29	\$ 1,000.00	\$ 1,300.00	\$ 7,626.29
.75	\$ 88.89 ¢ 99.90	\$ 6,214.30 \$ 5,405.19	\$ 6,214.30 ¢ E 40E 19	\$ 1,000.00	\$ 1,300.00	\$ 8,514.30 \$ 7,705.19
.61	\$ 88.89	\$ 6.918.31	\$ 6.918.31	\$ 1,000.00	\$ 1,300,00	\$ 9,753.18
.07	\$ 88.89	\$ 5,800.96	\$ 5,800.96	\$ 1,000.00	\$ 1,300.00	\$ 8,100,96
.88	\$ 88.89	\$ 5,826.74	\$ 5,826.74	\$ 1,000.00	\$ 1,300.00	\$ 8.126.74
.88	\$ 88.89	\$ 5,826.74	\$ 5,826.74	\$ 1,000.00	\$ 1,300.00	\$ 8,126.74
.25	\$ 88.89	\$ 5,924.52	\$ 5,924.52	\$ 1,000.00	\$ 1,300.00	\$ 8,224.52
.84	\$ 88.89	\$ 9,079.22	\$ 9,079.22	\$ 1,000.00	\$ 1,300.00	\$ 11,379.22
.12	\$ 88.89	\$ 5,765.41	\$ 5,765.41	\$ 1,000.00	\$ 1,300.00	\$ 8,065.41
.37	\$ 88.89	\$ 6,972.53	\$ 6,972.53	\$ 1,000.00	\$ 1,300.00	\$ 9,272.53
.88	\$ 88.89	\$ 4,718.28	\$ 4,718.28	\$ 1,000.00	\$ 1,300.00	\$ 7,018.28
.08	\$ 88.89	\$ 4,991.17	\$ 4,991.17	\$ 1,000.00	\$ 1,300.00	\$ 7,291.17
.74	\$ 88.89	\$ 4,922.73	\$ 4,922.73	\$ 1,000.00	\$ 1,300.00	\$ 7,222.73
11	\$ 66.69 ¢ 99.90	\$ 0,455.41 \$ 5.055.62	\$ 0,455.41 \$ E 055.62	\$ 1,000.00	\$ 1,300.00	\$ 6,753.41 \$ 9.255.62
.11	\$ 88.89	\$ 5,955.05 \$ 4,991.17	\$ 3,955.05	\$ 1,000.00	\$ 1,300.00	\$ 6,255.05 \$ 7,291.17
.05	\$ 88.89	\$ 9.253.45	\$ 9.253.45	\$ 1,000.00	\$ 1,300.00	\$ 11.553.45
.02	\$ 88.89	\$ 5,385.85	\$ 5,385.85	\$ 1,000.00	\$ 1,300.00	\$ 7,685.85
.35	\$ 88.89	\$ 4,915.62	\$ 4,915.62	\$ 1,000.00	\$ 1,300.00	\$ 7,215.62
.29	\$ 88.89	\$ 6,136.08	\$ 6,136.08	\$ 1,000.00	\$ 1,300.00	\$ 8,436.08
.08	\$ 88.89	\$ 4,991.17	\$ 4,991.17	\$ 1,000.00	\$ 1,300.00	\$ 7,291.17
.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
.48	> 88.89	\$ 4,911.17	\$ 4,911.17	\$ 1,000.00	\$ 1,300.00	\$ 7,211.17
01.	\$ 88.89 \$ 99.90	\$ 4,904.06 \$ 4,001.17	\$ 4,904.06	\$ 1,000.00	\$ 1,300.00	\$ 7,204.06
.08	\$ 88.89	\$ 4,991.17	\$ 4,991,17	\$ 1.000.00	\$ 1,300.00	\$ 7.291.17
.90	\$ 88.89	\$ 5,788.52	\$ 5,788.52	\$ 1,000.00	\$ 1,300.00	\$ 8,088.52
.90	\$ 88.89	\$ 5,788.52	\$ 5,788.52	\$ 1,000.00	\$ 1,300.00	\$ 8,088.52
.00	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.00	\$ 88.89	\$ 5,333.40	\$ 5,333.40	\$ 1,000.00	\$ 1,300.00	\$ 7,633.40
.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
08	> 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	⇒ 1,300.00 ¢ 1,300.00	\$ 7,224.51
.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51 \$ 4,924.51	\$ 1,000.00 \$ 1,000.00	\$ 1,300.00	\$ 7,224.51

PRELIMINARY ASSESSMENT ROLL 2018 STREET & UTILITY IMPROVEMENTS CITY OF HOPKINS, MN BMI PROJECT NO. T19.114259

10/10/201	7																	Α		В				
										FRO	ONT FOOT AS	SESSMENTS							STREET ASS	ESSMENT CAP				
PID	ADDITION NAME	ADDITION CODE	ADDRESS	OWNER NAME	OWNER NAME 2	GROUP	FRONT FOOTAGE	ADJUSTED FRONT FOOTAGE	DIVISION ST	TEXAS AVE S	CAMBRIDG E ST	OXFORD ST	LAKE ST NE	MURPHY ST	SUBTOTAL FRONT FOOT ASSESSMENT	ALLEY LAKE ST NE	SUBTOTAL UNIT ASSESSMENT	STREET ASSESSMENT WITHOUT CAP CONSIDERED	ASSESSMENT RATE CAP PER FRONT FOOT	STREET ASSESSMENT PER CAP	ASSESSMENT (Lesser of Column A or B)	PROPOSED SEWER SERVICE ASSESSMENT	PROPOSED WATER SERVICE ASSESSMENT	TOTAL PROPOSED ASSESSMENT
053-1911721110100	AUDITOR'S SUBD. NO. 363	37125 1400	LAKE ST N E	CREEKWOOD ESTATES APTS LLC		G	55.40		\$-	\$ -	\$ -	\$ -	\$ 217.33	\$ -	\$ 12,040.08	\$ 4,480.00	\$ 4,480.00	\$ 16,520.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
053-1911721110096	AUDITOR'S SUBD. NO. 363	37125 1416	LAKE ST N E	MELISSA D GENDRON		G	55.40)	\$ -	\$ -	\$ -	\$ -	\$ 217.33	\$ -	\$ 12,040.08	\$ 4,480.00	\$ 4,480.00	\$ 16,520.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
053-1911721110099	AUDITOR'S SUBD. NO. 363	37125 1406	LAKE ST N E	STEVEN & CHERYL BINENSTOCK		G	55.40	D	\$ -	\$ -	\$ -	\$-	\$ 217.33	\$ -	\$ 12,040.08	\$ 4,480.00	\$ 4,480.00	\$ 16,520.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
053-1911721110092	AUDITOR'S SUBD. NO. 363	37125 1432	LAKE ST N E	ANDREW WIEBERDINK		G	55.40	D	\$ -	\$ -	\$ -	\$-	\$ 217.33	\$ -	\$ 12,040.08	\$ 4,480.00	\$ 4,480.00	\$ 16,520.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
053-1911721110094	AUDITOR'S SUBD. NO. 363	37125 1424	LAKE ST N E	JEFFREY W GREER		G	55.40	D	\$ -	\$ -	\$ -	\$-	\$ 217.33	\$ -	\$ 12,040.08	\$ 4,480.00	\$ 4,480.00	\$ 16,520.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
053-1911721110098	AUDITOR'S SUBD. NO. 363	37125 1408	LAKE ST N E	LM & CB HOLDINGS LLC		G	55.40	D	\$ -	\$ -	\$ -	\$ -	\$ 217.33	\$ -	\$ 12,040.08	\$ 4,480.00	\$ 4,480.00	\$ 16,520.08	\$ 88.89	\$ 4,924.51	\$ 4,924.51	\$ 1,000.00	\$ 1,300.00	\$ 7,224.51
053-1911721110052	AUDITOR'S SUBD. NO. 239	37110 1321	DIVISION ST	DIVISION STREET PROPERTY LLP		н	140.00		\$ 158.61						\$ 22,205.40		\$ -	\$ 22,205.40		\$ -	\$ 22,205.40	\$ 1,500.00	\$ 4,000.00	\$ 27,705.40
053-1911721110126	KNOWLWOOD CROSSINGS	09777 1301	CAMBRIDGE ST	CAMBRIDGE TOWERS		н	268.00)			\$ 168.55				\$ 45,171.40		\$ -	\$ 45,171.40		\$ -	\$ 45,171.40	\$ 2,000.00	\$ 4,700.00	\$ 51,871.40
053-1911721110049	AUDITOR'S SUBD. NO. 239	37110 1220	CAMBRIDGE ST	SELA INVESTMENTS LTD L L P		н	544.00)			\$ 168.55				\$ 91,691.20		\$ -	\$ 91,691.20		\$ -	\$ 91,691.20	\$ 3,300.00	\$ 9,300.00	\$ 104,291.20
053-1911721110125	KNOWLWOOD CROSSINGS	09777 525	BLAKE RD N	CH RETAIL FUND II/MPLS KNOLL		н	137.00)			\$ 168.55				\$ 23,091.35		\$ -	\$ 23,091.35		\$ -	\$ 23,091.35	\$ 2,000.00	\$ 4,700.00	\$ 29,791.35
053-1911721110127	OXFORD VILLAGE	10367 1202-1304	OXFORD ST	OXFORD VILLAGE LTD PRTNRSHP		н	325.00					\$ 164.88			\$ 53,586.00		\$ -	\$ 53,586.00		\$ -	\$ 53,586.00	\$ 2,520.00	\$ 5,550.00	\$ 61,656.00
053-1911721110121	AUDITOR'S SUBD. NO. 239	37110 1328	LAKE ST N E	CREEKWOOD ESTATES APTS LLC		н	80.00)					\$ 217.33		\$ 17,386.40	\$ 49,280.00	\$ 49,280.00	\$ 66,666.40		\$ -	\$ 66,666.40	\$ 6,000.00	\$ 5,200.00	\$ 77,866.40
																					PRELIMINARY TO	FAL AMOUNT TO BE	ASSESSED	\$ 1,073,630.41

Hopkins Project Area

City of Hopkins, MN

2018 Assessment Roll

October 2017

Real People. Real Solutions.

Hopkins Project Area

2018 Proposed Total Assessment

620 TEXAS AVE 053-1911721110008

614 TEXAS AVE 053-1911721110009

610 TEXAS AVE 053-1911721110010

604)TEXAS/AVE 053-1911721110011

602 TEXAS AVE 053-1911721110012

518 TEXAS AVE 053-1911721110030

514 TEXAS AVE 053-1911721110031

502 TEXAS AVE 053-1911721110032

402 TEXAS AVE 053-1911721110109

1440 LAKE ST NE 53-1911721110090

1436 LAKE ST NE 53-191172111009

1423 LAKE STINE 053-1911721110108

1432 LAKE ST NE 053-1911721110092

1428 LAKE STINE 053-1911721110093

1424 LAKE ST NE 53-1911721110094

Texas Ave

Real People. Real Solutions.

City of Hopkins, MN

1213 OXFORD ST 53-1911 72111006

525 BLAKERDN 053-1911721110125

205 OXFORD S 3-19117211100

1 OXFORD S 19117211100

1202-1304 OXFORD ST (ADDRESS PENDING) 053-1911721110071

1331 LAKE ST NE 053-1911721110120

1325/LAKE STINE 053-1911721110124

132404KE)STNE 053-1911721110102

1320 LAKE STINE 053-1911721110103

1316 LAKE STNE 053-1911721110104

1321 LAKE STINE 053-1911721110082

1317 LAKE ST N 53-19117211100

1312 LAKE ST NE 053-1911721110105

1308 LAKE STNE 053-1911721110106

1305LAKE STNE 053-1911721110086

309 LAKE ST NE

TERMESTING TERMES

Appendix D: Neighborhood Meeting & Resident Questionnaire

2018 STREET & UTILITY IMPROVEMENTS NEIGHBORHOOD MEETING #1 (9/27/17) SUMMARY

- **Q**: 3750 Texas Ave was surprised by the sewer service that crosses his property and connect to the Church up the hill. The Church used to be on the entire block but the lot got subdivided. There is a Sanitary Manhole to the west of the driveway. Is there a way to move this sewer service off of the property?
- A: It may be a possibility to move the service into the street before it crosses the property at 3750 Texas Ave. This will be looked at as design progresses.
- **Q**: 1418 Cambridge St asked about specific concerns for removing the asphalt driveway and the garden area in front of their retaining wall.
- A: The design team will follow up with the homeowner during final design.
- **Q**: There was a concern about Lake St and Texas Ave access while Blake Rd construction occurred.
- A: The project will be staged so that not all access will be blocked at the same time.
- Q: Creekwood apartments has an annual striping project for their parking lot and plow the snow during the winter. During these times, those cars are forced to park on adjacent streets such as Texas Ave. Where will these cars park during those times if there is no parking allowed on Texas Ave.
- A: This is a private issue for the apartments and it would only happen a few times a year. The project team can talk to the apartment complex to let them know they need to stripe and plow the lot in segments so that not all of their cars are forced to park on adjacent streets.
- **Q**: What is going to be the impact on street parking due to the new apartments on Oxford?
- A: There will be very minor to essentially zero impacts to street parking because the apartments have an underground garage and an outside lot. A study was done that shows there will only be a few additional cars on the street during peek times.
- **Q**: Can there be parking on the east side of Oxford St?
- A: Oxford Street is proposed to be widened by 3 feet so there is a possibility for more parking. This will be looked into as the design progresses to see if parking is feasible on this block.
- **Q**: Can you park on the bike lanes overnight?
- A: No, there will be no parking allowed on the bike lanes at any time.
- **Q**: Is Texas Ave going to have parking lanes?
- A: No, there will be no parking on either side of Texas Ave due to the bike lanes.
- **Q**: The resident at 3831 Texas Ave went through a bad experience on a recent project on Lake St for the new forcemain. The irrigation and invisible fence was damaged by the past project and construction vehicles parked in the driveway. There are concerns with adding sidewalk on Texas Ave because of shoveling responsibilities to the homeowner and several elderly

residents on the block. There was issues with vehicles driving over turf from Lake St to Texas Ave but the current barrier has solved that issue.

- A: There will be additional forcemain work in the area for Met Council but communication will be much better. There will be a project representative on-site full-time for residents to call with questions or concerns. The barrier will be replaced with this project. The sidewalk concerns will be discussed with the City of St. Louis Park.
- **Q**: A sidewalk on Cambridge St in St. Louis Park would be a good idea because there a lot of pedestrians from St. Louis Park that walk to Cottageville Park.
- A: This will be discussed with the City of St. Louis Park.
- **Q**: One resident is opposed to the bike lane that is proposed in Lake St NE because they have never seen bikes along the corridor and on-street parking is needed.
- A: The bike lane on Lake St NE is just a shared use lane with cars and on-street parking will remain.
- **Q**: Where will cars park when Lake St NE and the alley south of it are being constructed?
- A: The alley and Lake St NE will be constructed at different times so you will be able to park on one or the other.
- **Q**: What are the assessments for this project?
- A: The project team will go over assessments in more detail at the next neighborhood meeting on November 1st with Hopkins residents. St. Louis Park residents will not be assessed for the project.
- **Q**: Was Texas Ave surveyed at night during the Parking Survey?
- A: Yes, Texas Avenue was surveyed at night and on weekends to get different times of day and different days of the week.

CITY OF HOPKINS

PUBLIC WORKS-ENGINEERING DIVISION 2018 STREET AND UTILITY IMPROVEMENT QUESTIONNAIRE

PLEASE RETURN TO CITY HALL (1010 1st St S, Hopkins MN 55343) BY: AUGUST 25, 2017

Street and utility improvements are proposed for your street in 2018. This questionnaire is a valuable resource for the City in identifying issues to receive attention. Your comments and concerns are greatly appreciated.

1. DRAINAGE

I have observed standing water in the street or my front yard after a significant rain. It is located at:

2. SANITARY SEWER

- _____ We have NOT experienced problems with our sanitary sewer service.
- We have experienced problems or replaced our sewer service. Please describe:

3. WATERMAIN

- We have NOT experienced problems with our water service.
- We have experienced problems or replaced our water service. Please describe:

4. SIDEWALKS

Do you have interest in seeing additional sidewalks within your neighborhood? If so, where?

IRRIGATION SYSTEM / INVISIBLE FENCE 5.

_____ Yes, we have an irrigation system. _____ Yes, we have an invisible pet fence.

6. TREES / LANDSCAPING

Do you have concerns about trees or landscaping in your front yard? If so, describe.

GENERAL COMMENTS / QUESTIONS 7.

Please describe any issues you suggest be considered as part of this project:

The following information is optional but is useful if we have a question about your responses:

Name:______ Phone No.:_____

Address:_____

THANK YOU FOR YOUR RESPONSE!

Should you have any questions please contact Eric Klingbeil, Assistant City Engineer, at 952-548-6357 or eklingbeil@hopkinsmn.com or Nick Amatuccio at 612-965-3926 or nickam@boltonmenk.com

2018 STREET & UTILITY IMPROVEMENTS QUESTIONNAIRE SUMMARY

- Sidewalk
 - More people do not want sidewalks than do
 - People who do want them on both sides of Lake and Texas, South Side of Cambridge, and on Oxford
- Drainage
 - Most people reported no issues
 - o 1309 and 1313 Lake St did report an issue of standing water in the curb
- Sewer Issues
 - Two reported with at least one Orangeburg service but both fixed
- Water Issues
 - One reported leak by the main that was fixed
- Landscaping
 - A couple of residents were concerned about fences and other landscaping being disturbed by construction
 - Some residents concerned about trees being harmed during roadwork
 - Several dead trees in the neighborhood
- Other
 - o Blind approach driveway on Oxford near Texas
 - One person wanted to widen Oxford for better street parking
 - Reducing the slope of hill and increasing sight distance on Cambridge
 - Widen Cambridge to make safer for pedestrians

Appendix E:

Geotechnical Evaluation

Geotechnical Evaluation Report

2018 Street and Utility Improvement Project Hopkins, Minnesota

Prepared for

Bolton & Menk, Inc.

Professional Certification:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Neil G. Lund, PE Senior Engineer License Number: 46212 August 3, 2017

Project B1605339

Braun Intertec Corporation

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438

August 3, 2017

Project B1705981

Nick Amatuccio, PE Bolton & Menk, Inc. 12224 Nicollet Avenue Burnsville, MN 55337-1649

Re: Geotechnical Evaluation 2018 Street and Utility Improvements City of Hopkins, Minnesota

Dear Mr. Amatuccio:

We are pleased to present this Geotechnical Evaluation Report for the 2018 Street and Utility Improvement Project in Hopkins, Minnesota. Our results and recommendations in light of the geotechnical issues influencing design and construction are presented in the attached report, which we request you read in its entirety.

Remarks

Thank you for making Braun Intertec Corporation your geotechnical consultant for this project. If you have questions about this report, or if there are other services that we can provide in support of our work to date, please call Neil Lund at 952.995.2284.

Sincerely,

BRAUN INTERTEC CORPORATION

Neil G. Lund, PE Senior Engineer

Matthew S. Oman, PE Principal Engineer

Table of Contents

Desc	cription		Page
A.	Introd	duction	1
	A.1.	Project Description	1
	A.2.	Purpose	1
	A.3.	Background Information and Reference Documents	1
	A.4.	Project Area Conditions	1
	A.5.	Scope of Services	2
В.	Resul	lts	3
	B.1.	Exploration Logs	3
		B.1.a. Log of Boring Sheets	3
		B.1.b. Geologic Origins	3
	B.2.	Geologic Profile	3
		B.2.a. Pavement Materials	3
		B.2.b. Geologic Materials	4
		B.2.c. Groundwater	5
	В.З.	Laboratory Test Results	6
C.	Basis	for Recommendations	6
	C.1.	Design Details	6
		C.1.a. Traffic Loads	6
		C.1.b. Anticipated Grade Changes	6
		C.1.c. Utility Depths	6
		C.1.d. Precautions Regarding Changed Information	7
	C.2.	Design and Construction Considerations	7
		C.2.a. Reuse of Pavement Materials	7
		C.2.b. Pavement Subgrades and Drainage	7
		C.2.c. Utility Support and Impact of Groundwater	8
D.	Recor	mmendations	8
	D.1.	Pavements	8
		D.1.a. Subgrade Preparation and Proofrolls	8
		D.1.b. Backfill and Material Compaction	9
		D.1.c. Design Sections	9
		D.1.d. Materials and Compaction	10
	D.2.	Utilities	10
		D.2.a. Subgrades and Trench Backfill	10
		D.2.b. Excavation Side Slopes	11
		D.2.c. Selection, Placement and Compaction of Backfill	11
		D.2.d. Excavation Dewatering	11
		D.2.e. Corrosion Potential	11
	D.3.	Construction Quality Control	12

Table of Contents (continued)

Description

Page

		D.3.a.	Excavation Observations	12
		D.3.b.	Materials Testing	12
		D.3.c.	Pavement Subgrade Proofroll	12
		D.3.d.	Cold Weather Precautions	12
E.	Proced	ures		13
	E.1.	Penetr	ation Test Borings	13
	E.2.	Materi	al Classification and Testing	13
		E.2.a.	Visual and Manual Classification	13
		E.2.b.	Laboratory Testing	13
	E.3.	Ground	dwater Measurements	13
F.	Qualifi	cations		13
	F.1.	Variati	ons in Subsurface Conditions	13
		F.1.a.	Material Strata	13
		F.1.b.	Groundwater Levels	14
	F.2.	Contin	uity of Professional Responsibility	14
		F.2.a.	Plan Review	14
		F.2.b.	Construction Observations and Testing	14
	F.3.	Use of	Report	14
	F.4.	Standa	rd of Care	14

Appendix

Boring Location Sketch Log of Boring Sheets (ST-01 through ST-15) (except ST-07) Descriptive Terminology

A. Introduction

A.1. Project Description

This Geotechnical Evaluation Report addresses the proposed 2018 Street and Utility Improvement Project in Hopkins, Minnesota. The total length of street reconstruction proposed for the project is about 7,170 feet and includes the following:

- Lake Street NE, from Blake Road to Texas Avenue N
- Murphy Street, from Lake Street NE to Oxford Street
- Oxford Street, from Blake Road N to Texas Avenue N
- Cambridge Street, from Blake Road N to Texas Avenue N
- Division Street, from the west end of the roadway to Texas Avenue N
- Texas Avenue N, from Alley to TH 7 Service Road
- Alley, from Texas Avenue N to the west end

A.2. Purpose

The purpose of this geotechnical evaluation was to characterize subsurface geologic conditions at selected exploration locations and provide geotechnical recommendations for the design and construction of the Hopkins 2018 Street and Utility Improvement Project.

A.3. Background Information and Reference Documents

To facilitate our evaluation, we were provided with or reviewed the following information or documents:

- A base map of the project area provided by Bolton & Menk, Inc.
- *Geologic Atlas of Hennepin County* available from the Minnesota Geological Survey.

A.4. Project Area Conditions

Based on our referenced documents and past experience, the native soils underlying the project area include sandy glacial outwash.

The 2018 Street and Utility Improvement Project area is mostly zoned Low-Density Multiple Family (R-2), with some areas zones for medium-high density residential and limited or neighborhood business.

The current streets with bituminous pavement and concrete curb and gutter. The topography is rolling; surface elevations generally decrease from north to south and east to west.

A.5. Scope of Services

Our scope of services for this project was originally submitted as a Proposal to Mr. Mike Waltman of Bolton & Menk, Inc., for which we received e-mail authorization to proceed on June 8, 2016. Tasks performed in accordance with our authorized scope of services included:

- Clearing exploration locations of underground utilities.
- Performing penetration test borings (labeled ST-1 through ST-15) and extending them to 15 feet (Murphy, Oxford, Texas and Alley eight borings) or 25 feet (Division, Lake and Cambridge seven borings) below the current pavement surface. One boring on Oxford Street, ST-7, could not be drilled due to the traffic and parking from an adjacent construction site.
- Providing signs and flaggers as needed to protect motorists and our field crew during drilling.
- Performing laboratory moisture content tests and mechanical analyses (#200 sieve only) on selected penetration test samples.
- Preparing this report containing a CAD sketch, exploration logs, a summary of the geologic materials encountered, results of laboratory tests, and recommendations for subgrade preparation, pavement thickness design and utility placement.

Exploration locations and surface elevations at the exploration locations were determined using GPS technology that utilizes the Minnesota Department of Transportation's (MnDOT's) permanent GPS Virtual Reference Network (VRN).

Our scope of services was performed under the terms of our September 1, 2013, General Conditions.

B. Results

B.1. Exploration Logs

B.1.a. Log of Boring Sheets

Log of Boring sheets for our penetration test borings are included in the Appendix. The logs identify and describe the geologic materials that were penetrated, and present the results of penetration resistance tests, laboratory tests performed on penetration test samples retrieved from them and groundwater measurements.

Strata boundaries were inferred from changes in the penetration test samples and the auger cuttings. Because sampling was not performed continuously, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may also occur as gradual rather than abrupt transitions.

B.1.b. Geologic Origins

Geologic origins assigned to the materials shown on the logs and referenced within this report were based on: (1) a review of the background information and reference documents cited above, (2) visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, (3) penetration resistance testing performed for the project, (4) laboratory test results and (5) available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

B.2. Geologic Profile

B.2.a. Pavement Materials

The borings first encountered an average bituminous pavement thickness of 4.3 inches as shown in Table 1. The aggregate base averaged 7.5 inches.

		Pavemen (it Thickness in.)	
Boring	Street	Bituminous	Aggregate Base	Notes
ST-01	Division St	3	8	
ST-02	Division St	3	8	
ST-03	Texas Ave S	6 1/2	8	
ST-04	Cambridge St	4	6	

Table 1. Pavement Thickness Summary

		Paveme	nt Thickness (in.)	
Boring	Street	Bituminous	Aggregate Base	Notes
ST-05	Cambridge St	3	7	
ST-06	Texas Ave S	6	8	
ST-08	Oxford St	3	8	
ST-09	Texas Ave S			Poor pavement condition; could not be measured
ST-10	Murphy St	3	9	
ST-11	Lake St NE			Not noted by drillers
ST-12	Lake St NE	5	7	
ST-13	Lake St NE	6	6	
ST-14	Alley		5	Bituminous pavement degenerated or not present
ST-15	Alley			Pavement degenerated
AVERAGE		4.3	7.5	

In Borings ST-09, ST-14 and ST-15, the pavement condition at the drilling locations was poor enough that distinct bituminous and aggregate base layers could not be measured. In ST-11, the boring was drilled in the roadway but the drillers did not note pavement thickness.

B.2.b. Geologic Materials

Table 2 provides a summary of the soil boring results, in the general order we encountered the strata. Please refer to the Log of Boring sheets in the Appendix for additional details. The Descriptive Terminology sheets in the Appendix include definitions of abbreviations used in Table 2.

Strata	Soil Type - ASTM Classification	Range of Penetration Resistances	Commentary and Details
Pavement section	N/A	N/A	See Table 1.
Fill (not incl. buried topsoil)	SP, SM, SC, CL	4 to 30	 General penetration resistance of less than 10 BPF. Moisture condition from moist to wet. Thicknesses at boring locations varied from 1 to 11 feet. Highly variable, with soils intermixed. Some organic layers (see buried topsoil strata description). Possible cobbles and boulders.
Buried topsoil	CL		 Present in ST-04, ST-09, ST-14, beginning at depths between about 1/2 and 4 feet

Table 2. Subsurface Profile Summary*

Strata	Soil Type - ASTM Classification	Range of Penetration Resistances	Commentary and Details
			 3 to 4 1/2 feet thick Black, wet, and slightly organic to organic
Alluvium/glaciofluvium	SP-SM, SM, SC, CL	4 to 5 BPF	 Present in ST-03, ST-11 and ST-12. Moisture condition generally wet.
Glacial deposits (outwash)	SP, SP-SM	4 to 50 blows in 1 inch	 General penetration resistance of 11 BPF or greater (medium dense). Variable amounts of gravel; may contain cobbles and boulders. Difficult drilling noted between 20 and 25 feet in ST-01 and ST-02. Pushed rock noted in ST-04. Moisture condition highway variable. Shallow samples relatively dry (2 to 3 percent moisture by weight). Water table penetrated in some borings (see Table 3).

*Abbreviations defined in the attached Descriptive Terminology sheets.

For simplicity in this report, we define fill to mean existing, uncontrolled or undocumented fill.

B.2.c. Groundwater

Groundwater was observed during our drilling operations as shown in Table 3.

Table 3. Grou	ndwater Obse	rvation Summary
---------------	--------------	-----------------

Boring	Surface Elevation (ft)*	Observed Groundwater Depth (ft)	Corresponding Groundwater Elevation (ft)
ST-01	920	23 1/2	896 1/2
ST-11	905	10	895
ST-12	906	12**	894
ST-13	917 1/2	24 1/2	893

*Rounded to nearest 1/2 foot.

**Water level measured at 17 feet after extraction of auger. See Log of Boring for details.

The most groundwater elevation was approximately between 893 and 896 1/2 feet. At the time we staked our borings, we measured the surface water elevation of Minnehaha Creek as 898 1/2.

Seasonal and annual fluctuations of groundwater should be anticipated.

B.3. Laboratory Test Results

Laboratory test results, including moisture content, organic content and mechanical analysis (#200 sieve only) tests, are summarized in Table 4. The moisture contents of the sandy fill soils (above the apparent water table) were around 2 to 3 percent, indicating the materials were likely below their optimum moisture contents for compaction. The higher moisture contents of noted clayey soils, ranging from 19 to 26 percent, are likely above their optimum moisture contents for compaction.

Borehole	Soil Classification	Depth	%<#200 Sieve	Water Content (%)	Organic Content (%)
ST-01	SP	5		2	
ST-02	SP	5		3	
ST-04	CL	5		27	6
ST-06	SP	2 1/2	88	26	
ST-10	SC	2 1/2		12	
ST-12	SC	7 1/2	40	18	
ST-14	SC	2 1/2		10	
ST-15	SP	2 1/2		2	

Table 4.	Laboratory	/ Testing	Results
Table 4.	Laboratory	resume	nesuits

C. Basis for Recommendations

C.1. Design Details

C.1.a. Traffic Loads

Traffic counts for the streets were not available. Based on the mixed zoning in the project area, we anticipate they will experience approximately 100,000 equivalent single axle loads (ESALs) over a 20-year service life.

C.1.b. Anticipated Grade Changes

Based on the nature of construction, we anticipate grade changes will be minimal.

C.1.c. Utility Depths

Design utility depths were not available. Based on the maximum requested boring depths, we assume sanitary sewer depths will be within 15 to 25 feet below grade. We also assume water main will

generally be less than 10 feet below grade and storm sewer improvements will be approximately 5 feet below grade.

C.1.d. Precautions Regarding Changed Information

We have attempted to describe our understanding of the proposed construction to the extent it was reported to us by others. Depending on the extent of available information, assumptions may have been made based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, we should be notified. New or changed information could require additional evaluation, analyses and/or recommendations.

C.2. Design and Construction Considerations

C.2.a. Reuse of Pavement Materials

Our borings encountered a bituminous layer averaging slightly less than 4 1/2 inches thick. This varied among the streets in the project area, with Lake Street NE and Texas Avenue S having thicknesses of about 6 inches. The aggregate base was 6 to 9 inches thick.

In our opinion, full-depth reclamation (FDR) can be utilized in order to obtain materials for aggregate base on the project. A proper reclamation depth will likely vary between about 8 and 10 inches. It may be possible to increase this thickness on Lake Street NE and Texas Avenue S.

We recommend thorough quality control practices, including frequent sieve analyses of the reclaimed material, if the product will be reused directly on site as aggregate base or a stabilizing material with minimal processing.

C.2.b. Pavement Subgrades and Drainage

The pavement subgrades will consist of mixed materials. Relatively sandy fill and glacial outwash soils were common below the pavement section, though areas of clayey sand and buried topsoil were also present.

We anticipate the majority of the subgrade soils present beneath the existing roads will generally be suitable for pavement support in their current condition or with minor rework such as surface compaction. The exception is the buried topsoils, which should be removed from excavations for pavements and in utility trenches. The shallow clayey sand or lean clay fill, present in ST-03, ST-06, ST-09, ST-10 and ST-12, may be wet or become wet upon exposure. These soils in particular may require additional work, such as drying or moisture conditioning, before they can be properly compacted.

C.2.c. Utility Support and Impact of Groundwater

The reuse of the utility trench backfill soils will have potential impacts on the pavement subgrades. If the backfill is not properly compacted, there is the potential for subgrade instability and settlement (and premature deterioration) of the driving surface. We anticipate the trench soils will consist of a mix of granular outwash soils (poorly graded sand and poorly graded sand with silt, poorly graded sand), along with clayey glaciofluvium or alluvium and, in some instances, buried topsoil fill.

Depending on the conditions at the time of excavation, drying of the clayey and silty soils may be necessary to achieve the levels of compaction recommended for utility support. Clayey and particularly silt-rich trench soils that are exposed to moisture will be more susceptible to strength loss and may also become unstable, which will require moisture conditioning or removal and replacement with suitable soils. Buried topsoil should be avoided for utility trench backfill at any depth.

Groundwater was present in a limited number of borings, all in sandy soils at depths likely for sanitary sewer placement. A coarse stabilizing aggregate could help with utility placement in wet or saturated conditions in these soils.

D. Recommendations

D.1. Pavements

D.1.a. Subgrade Preparation and Proofrolls

For preparation of any exposed subgrades prior to placement of new pavement sections or reclaimed aggregate (see below), we recommend proofrolling the subgrade soils with a loaded tandem-axle truck. This will assist in identifying any soft or weak areas that will require additional soil correction work. Areas that yield or rut more than 1 to 2 inches due to wheel traffic, depending on conditions, should be corrected. Failed areas should be compacted, or if too wet, we recommend that the upper 1 to 2 feet of the resulting subgrade be scarified, dried to a moisture content not more than 1 percentage point above optimum, and compacted to a minimum of 100 percent of its standard Proctor maximum dry density (ASTM D 698).

If there are areas that still cannot be compacted, we recommend subexcavating the unstable materials to a minimum depth of 1 to 2 feet depending on the outcome of the proofroll, as well replacement material. The soils should be replaced them with suitable, properly compacted materials such as select granular material, aggregate base or larger diameter crushed aggregate ("3-inch minus").

D.1.b. Backfill and Material Compaction

We recommend compacting soils used as backfill for subcuts or material replacement be compacted to a minimum of 100 percent of standard Proctor density within 3 feet of the top of the subgrade. For fills more than 3 feet below final subgrades, 95 percent compaction is sufficient. The moisture content of the fill and backfill should be as shown in the table below depending on the classification of the backfill soils. Our compaction requirements are summarized in Table 5.

•		
Reference	Relative Compaction, percent (ASTM D 698 – Standard Proctor)	Moisture Content Variance from Optimum, percentage Points
Below pavements, within 3 feet of subgrade elevations	100	-3/+3 (sandy soils) -2/+1 (clayey soils)
Below pavements, more than 3 feet below subgrade elevations Below utilities	95	-3/+3 (sandy soils) -2/+3 (clayey soils)

Table 5. Compaction Recommendations Summary

D.1.c. Design Sections

Laboratory tests to determine an R-value for pavement design were not included in the scope of this project. Given the most common soils in the top 5 feet of pavement sections, which include mostly silty sand with various other soils, we recommend using an R-value of 30 for pavement thickness design of the overall project. In our opinion, due to the variability of the subgrade soils, this R-value is a reasonable value to apply on a block-by-block basis. Further testing or refinement of the R-value used for design is possible and can be provided upon request. We recommend falling weight deflectometer (FWD) for this purpose.

Based upon the assumed traffic loads and an R-value of 30, we recommend a new pavement section for the streets in the 2018 Street Reconstruction meet the minimum thicknesses presented in Table 8.

Layer	Thickness (in.)	MnDOT Specification/Designation				
Bituminous Wear	2 (1 lift)	SPWEB240C				
Bituminous Non-wear	2 (1 lift)	SPNWB230C (or SPWEB240C)				
Aggregate Base (Class 5 or 6) or Reclaim	8	3138 3135				

Table 6. Recommended Bituminous Pavement Thickness Design

If a paved surface with a tighter and smoother look is desired, we recommend using a smaller maximum aggregate size in the wear course (SPWEA240C). Differences in performance will generally be minor, though the smaller aggregate size may be more prone to dimpling or distortion under concentrated or static loads.

The above pavement design is based upon a 20-year performance life. This is the amount of time before major reconstruction is anticipated. This performance life assumes maintenance such as seal coating and crack sealing is routinely performed. The actual pavement life will vary depending on variations in weather, traffic conditions and maintenance.

D.1.d. Materials and Compaction

We recommend specifying pavement materials as recommended in Table 6.

We recommend compacting the aggregate base or reclaim materials to meet the requirements of MnDOT specification 2211.3.D.2.c. (Penetration Index Method). We recommend compacting bituminous pavements to at least 92 percent of the maximum theoretical Rice density per the Maximum Density Method (specification 2360.3.D.1), with bituminous materials and placement practices meeting the requirements of MnDOT Specification 2360.

D.2. Utilities

D.2.a. Subgrades and Trench Backfill

The native and fill soils encountered at likely utility elevations generally appear suitable for pipe and utility structure support and we anticipate that utilities can be installed per manufacturer bedding requirements. However, we encountered some wet, clayey or silty soils in several borings; these soils may limited stability and not be suitable for backfill or support of utilities if wet. We recommend providing a contingency for further subcutting and soil replacement of utility backfill soils in clayey or silty soils. This will generally include any soils in existing fill materials above the native outwash, or those in alluvium/glaciofluvium at similar depths (5 to 10 feet).

In addition, the buried topsoil and fat clay (ST-12) are not considered suitable backfill materials under any circumstances. These soils should be removed and replaced with suitable grading materials where encountered during excavation. At pipe elevations, we recommend a minimum subcut and replacement with crushed-faced rock that is free of material 1 inch in diameter or smaller.

A geotechnical engineer should observe all utility trench excavations and subcuts.

D.2.b. Excavation Side Slopes

The project area soils appear to meet OSHA Type A, B and C requirements. We recommend constructing excavation side slopes to lie back at a horizontal to vertical slope of 1 1/2 to 1 or flatter. In significant depths of organic soils these side slopes may be need to made flatter, or supplemental support may be necessary.

All excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P, "Excavations and Trenches." This document states that excavation safety is the responsibility of the contractor. Reference to these OSHA requirements should be included in the project specifications.

Trenches deeper than 20 feet must be designed by a professional engineer.

D.2.c. Selection, Placement and Compaction of Backfill

We recommend compacting backfill placed above and below utilities as shown in Table 5.

To achieve compaction over wet or waterbearing subgrades, we recommend the use of sands or gravel with less than 5 percent by weight passing the number 200 sieve and less than 50 percent passing the number 40 sieve.

D.2.d. Excavation Dewatering

We recommend removing groundwater from the utility excavations if encountered, and removing any water that seeps into excavations from sidewalls or the adjacent sitework. Sumps and pumps will generally be suitable for short-term, small-scale water removal under the soil conditions likely to be encountered for this project. Alternative approaches should be considered for long-term or large-scale groundwater removal, particularly in sand such as those encountered on the project, which can become unstable during dewatering with pumps from within excavations.

D.2.e. Corrosion Potential

If founded in sandy soils, corrosion protection should not be required for ductile iron pipe. Type I cement may also be specified for concrete utilities.

Some clayey soils were present at likely utility depths, which are considered at least moderately corrosive to ductile iron pipe. We recommend corrosion protection or the use of corrosion-resistant pipe material if utilities will be bedded within such soils, particular if in close proximity to static groundwater.

D.3. Construction Quality Control

D.3.a. Excavation Observations

We recommend having a geotechnical engineer observe all excavations related to subgrade preparation, utility placement and pavement construction. The purpose of the observations is to evaluate the competence of the geologic materials exposed in the excavations and the adequacy of required excavation oversizing.

D.3.b. Materials Testing

We recommend density tests be taken in excavation backfill and additional required fill placed below pavements and utilities. This includes DCP tests for aggregate base or reclaim and imported granular materials.

We recommend Gyratory tests on bituminous mixes to evaluate strength and air voids and density tests to evaluate compaction.

D.3.c. Pavement Subgrade Proofroll

We recommend that proofrolling of the pavement subgrades be observed by a geotechnical engineer to determine if the results of the procedure meet project specifications and to delineate the extent of additional pavement subgrade preparation work that may be necessary.

D.3.d. Cold Weather Precautions

If site grading and construction is anticipated during cold weather, all snow and ice should be removed from cut and fill areas prior to additional grading. No fill should be placed on frozen subgrades. No frozen soils should be used as fill.

Concrete delivered to the site should meet the temperature requirements of ASTM C 94. Concrete should not be placed on frozen subgrades. Concrete should be protected from freezing until the necessary strength is attained.

E. Procedures

E.1. Penetration Test Borings

The penetration test borings were drilled with a truck-mounted core and auger drill equipped with hollow-stem auger. The borings were performed in accordance with ASTM D 1586. Penetration test samples were taken at 2 1/2- or 5-foot intervals. Actual sample intervals and corresponding depths are shown on the boring logs.

E.2. Material Classification and Testing

E.2.a. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

E.2.b. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM or AASHTO procedures.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled as noted on the boring logs.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore strata boundaries and thicknesses must be

inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

F.3. Use of Report

This report is for the exclusive use of the parties to which it has been addressed. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

F.4. Standard of Care

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

Appendix

:\2017\B1705981.dwg,Geotech,7/28/2017 4:37:18 AM

11001 Hampshire Avenue S Minneapolis, MN 55438 PH. (952) 995-2000 FAX (952) 995-2020

Base Dwg Provided By:

SOIL BORING LOCATION SKETCH GEOTECHNICAL EVALUATION 2018 STREET AND UTILITY IMPROVEMENTS HOPKINS, MINNESOTA

DENOTES APPROXIMATE LOCATION OF STANDARD PENETRATION TEST BORING

Project No: B170)5981	
Drawing No: B170)5981	
Scale:		1"= 200'
Drawn By:		JAG
Date Drawn:		6/23/17
Checked By:		NGL
Last Modified:		7/28/17
Sheet: of	Fig:	

ſ	Brau	3170	5981	1	BORING: ST-01										
	GEOTE Hopki	ECHNIC ns 201ዖ	AL E\ 8 Stre	/ALU et In	OITA) ססימו	N /ements	LOCATION: See attached sketch.								
)us)	Hopki	ns, Min	neso	ta											
reviatic	DRILLF	R: C	McCla	in		METHOD: 3 1/4" HSA. Autohammer DATE: 6/30/							1" = 4'		
of abb	Elev.	Depth						iala							
ation (feet 920.1	feet 0.0	Syn	nbol	(Sc	Dil-ASTM D2488	escription of Mater or D2487, Rock-USA	ials ACE EM1110	-1-2908)	BPF	WL	MC %	C Tests c	or Notes	
cplan	919.2	0.9	PAV	′	3 inc	ches of bitumir	nous over 8 inches	of aggrega	te base.						
for ey	_ 918.1	2.0	FILL	•	FILL	.: Silty Sand, f	fine- to medium-gra	ained, browi	n, moist.						
sheet			SP		POC med	ORLY GRADE	D SAND, fine-grai	ned, brown,	, moist,	∏ ∭ 19					
Vpolo	_						(Glacial Outwash	1)	_	μ					
ermino															
ive Te	_								_			2			
script	_					Fine- to coarse-grained, with Gravel at 7 1/2 feet.									
ee De	_				Fine					30					
S)	_														
	_					-									
	_														
•	_				Fine	Fine- to medium-grained, trace Gravel at 1			feet	15					
	_								_						
11:44										30					
8/3/17	_								_						
.GDT	_								_						
JRRENT	_														
V8_CL															
RAUN	_	Fine- to					ained, with Gravel	at 20 feet.	_	24			Difficult drill 25 feet.	ing at 20 to	
1.GPJ E	_								_						
\0598	_								_						
S\2017	_								_		l⊥		An open tri	angle in the	
KOJECT :													indicates th	e depth at	
S\AX PF	894.1	26.0			FND								observed w	hile drilling. A	
OJECTS	_				Wate	er observed at	t 23 12 feet with 24	1 1/2 feet of	_				the ground	e indicates water level in	
INT\PR	_				hollo	ow-stem auger	in the ground.		_				indicated.	on the date Groundwater	
:N:\G	_				Borir	ng then groute	ed.		-				levels fluctu	late.	
SORING															
JG OF E	_								_						
9 L	B1705981						Braun Interted	: Corporation				1	l S	T-01 page 1 of	

BRAUN INTERTEC

LOG OF BORING

B	RA	UN	SM								LO	G	OFB	ORIN
IN Bi Gi Ho Gi	raur raur EOTE opkir	CHNIC CHNIC 15 2018	ect B AL EV Stre	3170 /ALU/ et Im)598 ATIO nprov	1 N vements			BORING	: DN: Se	e atta	S	T-02 I sketch.	
		B· C	McClai	in		METHOD	3 1/4" HSA 4	Autohammer		<u> </u>				
	Elev. Depth feet feet				(6)		escription of M	Autorials	1 2008)	BPF	BPF WL		Tests or Notes	
anati	22.9	0.0	PAV	וסמר	(So 3 inc	ches of bitumir	or D2487, Rock	k-USACE EM1110	ate base.			%		
<u>a 92</u>	22.0	0.9	FILL		FILL	: Silty Sand, f	fine- to mediur	m-grained, brow	n, moist.					
nology sheet tor 	20.9	2.0	SP		POC Grav	ORLY GRADE vel, brown, mo	D SAND, fine bist, loose to m (Glacial Out)	- to coarse-grair nedium dense. wash)	ned, with -	- - - - - - - - - - - - - - - - - - -				
					Fine	e-grained, trace	e Gravel below	v 5 feet.		19		3		
(See Des 									-	8				
	-									13				
++ -									-	19				
									-	20				
	-									50/1'			Difficult dril 25 feet.	ling at 20 to
									-	-				
	96.9	26.0			END) of Boring	i.			41				
	-									-				
5 -									-	1				
B170	15981						Braun In	tertec Corporation			-			ST-02 page 1

LOG OF BORING

Braun Intertec Corporation

<u>Braun</u> ™	
INTERTEC	

LOG OF BORING

	Braun Project B1705981									BORING: ST-03						
ions)	GEOTE Hopki Hopki	CHNIC ns 2018 ns, Min	AL EV Stree nesot	ALU et Im ta	ATIOI 1prov	provements				LOCATION: Offset 20 feet south from ori staked location. See attached sketch.						
previat	DRILLE	R: М.	Takada	1		METHOD: 3 1/4" HSA, Autohammer					6/3	0/17	SCALE:	1'' = 4'		
tion of abt	Elev. feet	Depth feet	Sym	bol	(50	De Dil-ASTM D2488	escription o	of Materials	10-1-29	08)	BPF	WL	VL Tests or Notes			
lana	300.3	0.0	PAV		6 1/2	2 inches of bitu	iminous ov	er 8 inches of ag	gregate	e						
neet for exp	<u> </u>	1.2	FILL		base FILL brow	e. : Clayey Sand vn, moist.	l, trace org	anic at top of laye	er, dark	 (
ology st	_ 904.3	4.0									8					
ive Termin					LEA	N CLAY with S	Glaciofl (Glaciofl	wn, moist, rather luvium)	soπ.		4					
(See Descript	901.3	7.0	SP		POC brow	RLY GRADEI n, moist, med	D SAND, fi ium dense (Glacial O	ine- to medium-gi to dense. Dutwash)	rained,		26					
					With	Gravel below	12 1/2 feet	t.			27					
3DT 8/3/17 11:44	 892.3 	16.0			END	OF BORING.	d to cave-ir	n depth of 7 feet			22					
N_V8_CURRENT.0					imme Borir	ediately after w ng then backfil	vithdrawal o led.	of auger.								
CTS\2017\05981.GPJ BRA										-						
I:\GINT\PROJECTS\AX PROJE										-						
LOG OF BORING N																
BRAUN	5 <i>N</i>															
----------	------------															
INTERTEC																

ſ	Braur	n Proje	ect B	170	598 2	1				BORING:			S	T-04	
ations)	GEOTE Hopkin Hopkin	CHNIC ns 2018 ns, Min	AL EV Stree nesot	ALU et Im a	ATIO Iprov	N vements				LOCATIC location.	N: Off See att	fset 4 tache	feet d ske	east from orig etch.	ginally staked
brevia	DRILLE	R: M.	Takada	l		METHOD:	3 1/4"	HSA, Autoh	ammer	DATE:	6/3	0/17		SCALE:	1'' = 4'
lation of ab	Elev. feet 917.6	Depth feet 0.0	Sym	bol	(Sc	De Dil-ASTM D2488	escriptio or D248	n of Mater 7, Rock-US/	ials ACE EM1110	-1-2908)	BPF	WL	MC %	Tests	or Notes
xplar	916.8	0.8	PAV		4 inc	ches of bitumir	nous ove	er 6 inches	s of aggrega	te base.					
ology sheet for ex								ained, with (Gravel, – –	5					
<u>scriptive Termin</u>	FILL: Lean Clay with Sand, organic, black (Buried Topsoil) 910.6 7.0						black, mois)		5		27	OC=6%			
See Des	-	0.0	FILL		FILL	.: Lean Clay, t	orown, n	noist.		_	6				
)		9.0	FILL		FILL Grav	: Intermixed C vel, brown and	Clayey S ⊨black, v	and/Poorly wet.	y Graded Sa	and, with	30				
4	905.6 	12.0	SP		POC med	ORLY GRADE ium dense.	D SANE (Glacia	D, fine-grai al Outwash	ned, brown, ו)	moist, –	21				
S\AX PROJECTS\2017\05981.GPJ BRAUN_V8_CURRENT.GDT 8/3/17 11:	901.6 	16.0			END Wate imme Borin	O OF BORING er not observe ediately after v ng then backfi	ed to cav vithdraw lled.	<i>r</i> e-in depth al of auge	n of 8 feet r.		⊻50/6"			Pushed roo	ж.
LOG OF BORING N:\GINT\PROJECTS	- - 														

GEOTECHNICAL EVALUATION Hopkins 2018 Street Improvements DRILLER: C. McClain METHOD: 31/4"HSA. Autohammer DATE: 7/6/17 SCALE: 1"= Ever, Depth g27.6 0.6 PAV Street Improvements Description of Materials g27.8 0.6 PAV Street Improvements FILL FILL Porty Graded Sand, fine- to medium-grained, trace Gravel, brown, moist. 921.6 7.0 SP POORLY GRADED SAND, fine- to medium-grained, trace Gravel, brown, moist. 921.6 7.0 SP POORLY GRADED SAND, fine- to medium-grained, 10 Improvements 110 Improvements 922.6 26.0 MEND OF BORING. 902.6 26.0 END OF BORING. Water not observed to cave-in depth of 14 feet Improvement filed. 902.6 26.0 Method Sand, fine- to medium diager. Boring then backfilled.	Braur	n Proje	ect B17	05981			BORING:			ST-05	
DRILLER: C. MuClain METHOD: 3 1/4*HSA, Autohammer DATE: 7(6/17) SCALE: 1** Elev. Depth feet Depth feet Description of Materials (SoL-ASTM D248 or D2487, Rock-USACE EM1110-1-2006) BPF WL Tests or Notes 927.8 0.8 PAV 3 inches of biluminous over 7 inches of aggregate base. FILL FILL FILL POORLY ORADED SAND, fine- to medium-grained. race Gravel, brown, moist. 7 7 921.6 7.0 SP POORLY ORADED SAND, fine- to medium-grained. race Gravel, brown, moist. 7 4 921.6 7.0 SP POORLY ORADED SAND, fine- to medium-grained. race Gravel, brown, moist. 7 4 922.6 7.0 SP POORLY ORADED SAND, fine- to medium-grained. race Gravel, brown, moist. 7 10 - - - - - - - 44 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< th=""><th>GEOTE Hopki Hopki</th><th>CHNIC ns 2018 ns, Min</th><th>AL EVAL Street I nesota</th><th>JATION mprove</th><th>l ements</th><th>-</th><th>LOCATIO</th><th>N: Se</th><th>e attach</th><th>ed sketch.</th><th></th></td<>	GEOTE Hopki Hopki	CHNIC ns 2018 ns, Min	AL EVAL Street I nesota	JATION mprove	l ements	-	LOCATIO	N: Se	e attach	ed sketch.	
Etex, feet Depth feet Description of Materials BPF WL Tests or Notes 927.8 0.8 PAV 3 inches of bituminous over 7 inches of aggregate base.	DRILLE	R: C.	McClain		METHOD: 3 1/4" HSA, Autohammer		DATE:	7/6	6/17	SCALE:	1" = 4
30 PAV 3 Inches of bituminous over 7 Inches of aggregate base. 927.8 0.8 PAV 3 Inches of bituminous over 7 Inches of aggregate base. 927.8 0.8 FILL Poorly Graded Sand, fine- to medium-grained, trace Gravel, brown, moist. 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 921.6 70 5 922.6 26.0 10 922.6 26.0 13 922.6 26.0 END OF BORING. Water not observed to cave-in depth of 14 feet immediately after withdrawal of auger. 53 902.6 26.0 Entitied.	Elev. feet 928.6	Depth feet	Symbol	(Soi	Description of Materials	//1110-	1-2908)	BPF	WL	Tests or Notes	
Job FILL	927.8	0.0	PAV	3 incl	nes of bituminous over 7 inches of ag	gregat	e base.				
Water not observed to cave-in depth of 14 feet	921.6	7.0	SP	POO trace	Poorly Graded Sand, fine- to mediur Gravel, brown, moist. RLY GRADED SAND, fine- to mediur Gravel, brown, moist, very loose to ve (Glacial Outwash)	m-grair m-grair ery stiff	ned,	7 5 4 5 10 13 44 53			
				Wate imme Borin	r not observed to cave-in depth of 14 diately after withdrawal of auger. g then backfilled.	feet					

BRAUN[™]

ſ	Braur	n Proje	ect B	170	598:	1			BORING:			S	T-06	6	
ations)	GEOTE Hopkii Hopkii	CHNIC/ ns 2018 ns, Min	AL EV Stree nesot	ALU, et Im :a	ATIO Iprov	N vements			LOCATIC from origi)N: Off nally sta	fset 2 aked	5 fee locati	t north ion. S	and 20 feet west ee attached sketch.	
obrevi	DRILLE	R: M.	Takada	l		METHOD:	3 1/4" HSA, Au	tohammer	DATE:	6/3	0/17		SCALE: 1" = 4'		
lation of at	Elev. feet 909.0	Depth feet 0.0	Sym	bol	(Sc	De Dil-ASTM D2488	escription of Ma or D2487, Rock-I	aterials USACE EM1110-	-1-2908)	BPF	WL	MC %	P200 %	Tests or Notes	
explar	- 907.8	1.2	PAV		6 inc	ches of bitumir	nous over 8 inch	nes of aggrega	te base.						
ogy sheet for e	005.0	- FILL FILL - 905.0 4.0					LL: Lean Clay with Sand, dark brown, moist.			6		26	88		
riptive Terminolo	905.0 4.0 FILL: Sandy Lean Clay, brown, moist.						noist.		6						
(See Descr	902.0 7.0 SP POOR Gravel					DRLY GRADE vel, brown, mo	D SAND, fine- t ist, medium der (Glacial Outwa	to medium-grai nse. ash)	ned, with 	15					
									-	12 29*				*No recovery.	
8/3/17 11:44	 	16.0			END) of Boring				16					
KENI.GDI	_				Wate imme	er not observe ediately after v	ed to cave-in de vithdrawal of au	pth of 9 feet Iger.	_						
GPJ BKAUN_V8_CUF	-				Borir	ng then backfi	lled.								
JECIS\201 /\05981.	-								-						
VPRUJECIS/AX PRO	-								_						
BORING N:\GINT	_														
LOG OF	_								_						

Braui	n Proje	ect B170	5981			BORING:			ST-08	
GEOTE Hopki Hopki	CHNICA ns 2018 ns, Min	AL EVALU Street In nesota	ATION iproveme	ents		LOCATIO	N: Se	e attach	ned sketch.	
DRILLE	R: C.	McClain	ME	THOD: 3 1/4" HSA, Auto	ohammer	DATE:	6/3	0/17	SCALE:	1" = 4
Elev. feet 928.6	Depth feet 0.0	Symbol	(Soil-AST	Description of Mat IM D2488 or D2487, Rock-U	erials SACE EM1110	-1-2908)	BPF	WL	Tests or	Notes
927.7	0.9	PAV	3 inches o	of bituminous over 8 inche	es of aggrega	ite base.				
_		SP	POORLY Gravel, br	GRADED SAND, fine- to own, moist, medium den (Glacial Outwa	o coarse-grair se. sh)	ned, with	23			
						-	15			
						-	14 27			
912.6	16.0		END OF I	BORING.			23			
			Water not Boring the	t observed while drilling. en backfilled.						
-										
						_				

B1705981

BRAUN	SM
INTERTEC	

	Brau	n Proje	ect B	170	598:	1				BORIN	G:			S	ST-09	
ations)	GEOTI Hopki Hopki	ECHNIC/ ns 2018 ns, Min	AL EV Stree nesot	ALU et Im a	ATIO 1prov	N vements				LOCAT staked l		N: Off ation.	set 3 See	80 fee attac	et north from ched sketch.	originally
brevia	DRILLE	R: M.	Takada	I		METHOD:	3 1/4" HS	SA, Autohammer		DATE:		6/3	0/17		SCALE:	1'' = 4'
ation of at	Elev. feet 909.2	Depth feet 0.0	Sym	bol	(Sc	Dil-ASTM D2488	escription or D2487, I	of Materials Rock-USACE EM11	10-	1-2908)		BPF	WL		Tests or	Notes
ty sheet for explan	908.2 	1.0	FILL		FILL _ coar FILL	: Poorly Grad se-grained, w : Clayey Sand	led Sand v ith Gravel, d, with Gra	with Silt, fine- to brown, moist. avel, brown and bl	lacl	<, moist.	-X	* 20		*Pa bori	vement in po ing location.	oor condition a
ptive Terminolog	<u>905.2</u> — <u>903.2</u>	4.0 6.0	FILL		FILL	: Lean Clay w	vith Sand, (Buried d, dark bro	slightly organic, b Topsoil) own, moist.	lac	k, wet. _		4				
(See Descri	_ 	9.0	FILL		FILL	: Poorly Grad	led Sand,	fine- to coarse-gra	aine	ed, with	_ _X	6				
	 	12.0	SP		Clay	PILY GRADE		, dark brown, moi	ist.		_X	21				
11:44	- - 	16.0			Grav	vel, brown, mo	(Glacial (m dense to dense Outwash)	9.			37 15				
_CURRENT.GDT 8/3/17	 	10.0			END Wate imm Borir	O OF BORING er not observe ediately after v ng then backfi	i. ed to cave- withdrawal illed.	in depth of 7 feet of auger.			_					
05981.GPJ BRAUN_V8	 _ _										_					
\AX PROJECTS\2017\	_									_	_					
N:\GINT\PROJECTS	-															
OG OF BORING											_					

BRAUN	5M
INTERTEC	

	01-1U
e attache	d sketch.
/17	SCALE: 1" = 4'
	Tests or Notes
12	
	→ attached /17 WL MC % 12

BRAUN [™]	
INTERTEC	

ſ	Brau	n Proje	ect B	170	5981	1			BORING:			S	T-11	
	GEOTE Hopki	ECHNICA ns 2018	AL EV Stree	ALU/ et Im	ATIOI Iprov	N vements	LOCATIO	N: Off	fset 2 See	0 fee attac	t south from	originally		
ions)	Hopki	ns, Min	nesot	ta	•									
<u>oreviat</u>	DRILLE	R: M.	Takada	a		METHOD:	3 1/4" HSA, /	Autohammer	DATE:	6/3	0/17		SCALE:	1" = 4'
of abl	Elev.	Depth feet				De	escription of N	/laterials		BPF	wi		Tests or	Notos
nation	905.0	0.0	Sym	ibol	(Sc	bil-ASTM D2488	or D2487, Roc	k-USACE EM1110-	-1-2908)				16313 01	NOLES
explar	_		FILL		FILL and	:Silty Sand, f black, wet.	ine-grained, v	vith Gravel, dark	brown 	*		*Pa note	vement thickr ed by drillers.	ness not
et for	_								_					
y she	_								_	22				
nolog	-								_					
Termi										18				
iptive	-	7.0							_	Δ				
Descri	898.0	7.0	SC		CLA	YEY SAND, li	ght brown and	d gray, wet, rathe	er soft.					
See [-						(Alluviur	n)	-	4				
	- 895.0	10.0							_					
	_		SP		POC dept	RLY GRADE	D SAND, fine	-grained, coarse earing, very loose	r with e to	4				
	_				med	ium dense.	(Glacial Out	wash)	_					
	_								_	₫ 4				
	_								_					
1:44										V 4				
3/17 1	-								_	<u>Д</u> .				
3DT 8/	-								_					
RENT.0	-								_					
/8_CUF	-								_					
SAUN_										5				
GPJ BF	_													
05981	_								_					
\2017	_								_					
COLECTS										15				
S\AX PF	_ 879.0	26.0			END									
KOJECT!	-				Wate	er observed at	a depth of 10) feet while drilling	q					
SINT\PF.	-				Borir	ng then aroute	ed.		-					
g N:/G	-					J			_					
BORIN														
OG OF	-								_					
- 6	B1705981						Braun Ir	ntertec Corporation			1		S	T-11 name 1 of

iM			

Braur	n Proje	ct B	170	5981	BORING):			S	T-12		
GEOTECHNICAL EVALUATION Hopkins 2018 Street Improvements Hopkins Minnesota				LOCATI	LOCATION: See attached sketch.							
			Ld				7//	2/47		SCAL	E: 4"	· – 4'
Flev	Denth	vicciai		WETHOD. 3 1/4 HSA, Autonammer	DATE.	Τ	//	5/17			E. 1	= 4
feet 906.2	feet 0.0	Sym	ibol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)		BPF	WL	MC %	P200 %	Tests or	Notes
905.2	1.0	PAV		5 inches of bituminous over 7 inches of aggr	egate base.							
		FILL		FILL: Clayey Sand, with Gravel, dark brown moist.	and black,							
						4	5					
						А						
_					_							
900.2	6.0					M	5					
		CL		CLAYEY SAND, brown, wet, rather soft.		\prod						
					-		4		18	40		
897 2	9.0					Å	7					
001.2	0.0	СН		FAT CLAY, gray, wet, rather soft.								
-				(Glacionuvium)		M	5					
004.0	10.0					Π						
894.2	12.0	SP		POORLY GRADED SAND, fine- to coarse-g	grained, with		_	Į⊻				
				Gravel, reddish brown, waterbearing, loose to dense.	o medium	-M	5					
				(Glacial Outwash)	-							
-						M	13					
								₽				
						_						
					-							
_						╢	10					
						Щ	10					
_					_		-					
880.2	26.0					Д	8					
				END OF BORING.								
				Water observed at 12 feet with 12 feet of hol auger in the ground.	ow-stem	$\left \right $						
				Water observed at 17 feet with 24 1/2 feet of auger in the ground.	hollow-stem							
				Boring then grouted.								

INT	ERTEC													
Bra GEO	un Proje TECHNIC	ect B: AL EV/	170 ALU/	5981 Ation	L N				BORING:	NI: Off	feat ?	S ⁻	T-13	originally
Hop Hop	kins 2018 kins, Min	Stree nesot	et Im a	nprov	ements				staked loc	ation.	See	attach	ned sketch.	Jigilaliy
DRIL	LER: C.	McClain	1		METHOD:	3 1/4" HS	SA, Autoham	ımer	DATE:	7/6	6/17		SCALE:	1'' = 4'
Elev. feet 917.	Depth feet	Syml	bol	(So	De bil-ASTM D2488	escription or D2487,	of Material Rock-USAC	s E EM1110-	·1-2908)	BPF	WL		Tests or	Notes
916	6 10	PAV		6 inc	hes of bitumin	nous over	6 inches o	f aggregat	te base.					
		FILL		FILL: brow	: Silty Sand, fi 'n, moist.	ine- to me	dium-grain	ed, trace	Gravel,	10				
 	.6 9.0	SP		POO	RLY GRADE	D SAND,	fine- to me	dium-grai	 ned,	4				
				trace	e Gravel, brow	n, moist, v (Glacial (rery loose t Outwash)	o medium	1 dense 	3 13 22		No re	ecovery.	
<u>898.</u> 	.6 19.0	CL		SAN	DY LEAN CL/	AY, trace ((Glac	Gravel, red ial Till)	dish brow	/n, moist. 	17				
893.	.6 24.0	SC		CLA	YEY SAND, tr	ace Grave	el, brown, v	vaterbeari	ing.		$\overline{\nabla}$			
 891.	.6 26.0			FND						11				
				Wate hollo	er observed at w-stem auger	: 24 1/2 fe in the gro	et with 24 ⁻ ound.	1/2 feet of						

B1705981

BRAUN[™]

BRAUN [™]			LOO	G OF BORING			
INTERTEC Braun Project B170	5981	BORING:		ST-14			
GEOTECHNICAL EVALUA Hopkins 2018 Street Im Hopkins, Minnesota	ATION provements	LOCATION: Offset 20 feet east and 5 feet south from originally staked location. See attached sketch.					
DRILLER: M. Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	6/30/17	SCALE: 1" = 4'			
Elev. Depth feet feet 912.0 0.0 Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-	-1-2908)	PF WL M	IC Tests or Notes			
911.6 0.4 PAV 911.6 0.4 PAV FILL FILL 907.0 5.0 907.0 5.0 907.0 SP 907.0 5.0 907.0 SP 907.0 SP <td< td=""><td> <u>5</u> inches of aggregate base. FILL: Clayey Sand, slightly organic, black and da brown, wet. (Buried Topsoil) POORLY GRADED SAND, fine- to coarse-grain. Gravel, brown, moist, loose to medium dense. (Glacial Outwash) END OF BORING. Water not observed while drilling. Boring then backfilled. </td><td>ark</td><td>* 7 1 14 9 11 12 17</td><td>*Bituminous not present or in poor condition at boring location.</td></td<>	 <u>5</u> inches of aggregate base. FILL: Clayey Sand, slightly organic, black and da brown, wet. (Buried Topsoil) POORLY GRADED SAND, fine- to coarse-grain. Gravel, brown, moist, loose to medium dense. (Glacial Outwash) END OF BORING. Water not observed while drilling. Boring then backfilled. 	ark	* 7 1 14 9 11 12 17	*Bituminous not present or in poor condition at boring location.			

Brau	n Proje	ct B170	5981	BORING:			S	T-15	
GEOTE Hopki Hopki	LOCATIO	LOCATION: See attached sketch.							
DRILLE	R: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	6/3	0/17		SCALE:	1" = 4
Elev. feet 914.8	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM111	10-1-2908)	BPF	WL	MC %	Tests o	r Notes
898.8	0.4	SC SP	CLAYEY SAND, dark brown, wet. (Topsoil/Road Surface) POORLY GRADED SAND, fine- to coarse-gra Gravel, light brown, moist, medium dense. (Glacial Outwash)		20 22 22 23 16 15 15		2	*Pavement ir condition.	n poor
			END OF BORING. Water not observed to cave-in depth of 7 feet immediately after withdrawal of auger. Boring then backfilled.	- - - - - - - - - - - - - - - - - - -					

Descriptive Terminology of Soil Standard D 2487

Classification of Soils for Engineering Purposes (Unified Soil Classification System)

	Calta	ula fau Analami	ne Crown	Symbols and	Soi	Is Classification
	Gro	Group Symbol	Group Name ^b			
L.	Gravels	Clean Gravels Less than 5% fines ^e		$C_u \ge 4 \text{ and } 1 \le C_c \le 3^c$	GW	Well-graded gravel d
oils led (More than 50% of			$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel ^d
d S etair	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel ^{d f g}
ine % re) sie	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg
gra 50% 200	Sands Sands Solo Color Solo Color Solo Color Sands Solo Color Sands Solo Color Sands Solo Color Sands Solo Color Sands Sands Solo Color Sands Solo Color Sands Solo Color Sands Sands Solo Color Sands Solo Color Sands	Clean Sands		$C_{u} \ge 6 \text{ and } 1 \le C_{c} \le 3^{c}$	SW	Well-graded sand h
rse- nan No.		Less than 5	% fines ^I	$C_{u} < 6 \text{ and/or } 1 > C_{c} > 3^{c}$	SP	Poorly graded sand ^h
Coa re ti		Sands with Fines More than 12% ⁱ		Fines classify as ML or MH	SM	Silty sand ^{fgh}
om	No. 4 sieve			Fines classify as CL or CH	SC	Clayey sand ^{fgh}
e		Inorgania	PI > 7 and plots on or above "A" line j		CL	Lean clay k i m
ed th	Silts and Clays	morganic	PI < 4 or plots below "A" line ¹		ML	Silt ^{k I m}
So Sse eve	Liquid limit	Organic	Liquid limit - oven dried < 0.75 Liquid limit - not dried		OL	Organic clay ^{k I m n}
pa ba		Organic			OL	Organic silt k I m o
ore 200		Increanie	PI plots o	on or above "A" line	CH	Fat clay ^{k I m}
lo.	Silts and clays	inorganic	PI plots b	PI plots below "A" line		Elastic silt k I m
ni= % 0	50 or more	Organia	Liquid limit - oven dried		OH	Organic clay k I m p
50,		Organic	Liquid lin	Liquid limit - not dried < 0.75		Organic silt ^{k I m q}
Highly	/ Organic Soils	Primarily orga	anic matter	r, dark in color and organic odor	PT	Peat

Based on the material passing the 3-inch (75mm) sieve. a.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. b

- $C_u = D_{60}/D_{10} C_c = (D30)^2$ c.
- D₁₀ x D₆₀
- If soil contains ≥15% sand, add "with sand" to group name. d
- Gravels with 5 to 12% fines require dual symbols: e. GW-GM
 - well-graded gravel with silt GW-GC
 - well-graded gravel with clay GP-GM
 - poorly graded gravel with silt GP-GC
 - poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM. f.
- If fines are organic, add "with organic fines: to group name. g.
- If soil contains ≥15% gravel, add "with gravel" to group name h.
- Sand with 5 to 12% fines require dual symbols: i.
 - SW-SM well-graded sand with silt
 - well-graded sand with clay SW-SC
 - SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥ 30% plus No. 200, predominantly sand, add "sandy" to group name. Ι.
- If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name. m.
- $PI \ge 4$ and plots on or above "A" line. n.
- PI < 4 or plots below "A" line. ο.
- PI plots on or above "A" lines. p.
- a. PI plots below "A" line.

ΡI

P200

Plasticity index, %

% passing 200 sieve

qu

qp

Unconfined compressive strength, psf

Pocket penetrometer strength, tsf

Particle Size Identification Boulders..... over 12"

Cobble	es	3" to 12"
Grave	I	
C	coarse	3/4" to 3"
F	ine	No. 4 to 3/4"
Sand		
C	coarse	No. 4 to No. 10
N	1edium	No. 10 to No. 40
F	ine	No. 40 to No. 200
Silt		<no. 200,="" 4="" below<="" or="" pi<="" td=""></no.>
		"A" line
Clay .		<no. 200,="" <u="" pi="">> 4 and on</no.>
-		or about "A" line

Relative Density of Cohesionless Soils

/ery Loose 0 to 4 BPF	
_oose5 to 10 BPF	
Medium dense 11 to 30 PPF	
Dense 31 to 50 BPF	
/ery dense over 50 BPF	

1

Consistency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers, unless noted otherwise. Jetting water was used to clean out auger prior to sampling only where indicated on logs. All samples were taken with the standard 2" OD split-tube samples, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuous flight, solid-stern augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface, and are therefore, somewhat approximate.

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments, and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight, and driving not required.

TW: TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Rev. 9/15

Services Provided:

Civil and Municipal Engineering Water and Wastewater Engineering Traffic and Transportation Engineering Aviation Planning and Engineering Water Resources Engineering Coatings Inspection Services Landscape Architecture Services Surveying and Mapping Geographic Information System Services Funding Assistance

www.bolton-menk.com